Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1378804, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736749

RESUMEN

Introduction: Seasonal human coronavirus NL63 (HCoV-NL63) is a frequently encountered virus linked to mild upper respiratory infections. However, its potential to cause more severe or widespread disease remains an area of concern. This study aimed to investigate a rare localized epidemic of HCoV-NL63-induced respiratory infections among pediatric patients in Guilin, China, and to understand the viral subtype distribution and genetic characteristics. Methods: In this study, 83 pediatric patients hospitalized with acute respiratory infections and positive for HCoV-NL63 were enrolled. Molecular analysis was conducted to identify the viral subgenotypes and to assess genetic variations in the receptor-binding domain of the spiking protein. Results: Among the 83 HCoV-NL63-positive children, three subgenotypes were identified: C4, C3, and B. Notably, 21 cases exhibited a previously unreported subtype, C4. Analysis of the C4 subtype revealed a unique amino acid mutation (I507L) in the receptor-binding domain of the spiking protein, which was also observed in the previously reported C3 genotype. This mutation may suggest potential increases in viral transmissibility and pathogenicity. Discussion: The findings of this study highlight the rapid mutation dynamics of HCoV-NL63 and its potential for increased virulence and epidemic transmission. The presence of a unique mutation in the C4 subtype, shared with the C3 genotype, raises concerns about the virus's evolving nature and its potential public health implications. This research contributes valuable insights into the understanding of HCoV-NL63's epidemiology and pathogenesis, which is crucial for effective disease prevention and control strategies. Future studies are needed to further investigate the biological significance of the observed mutation and its potential impact on the virus's transmissibility and pathogenicity.


Asunto(s)
Infecciones por Coronavirus , Coronavirus Humano NL63 , Epidemias , Genotipo , Filogenia , Infecciones del Sistema Respiratorio , Humanos , Coronavirus Humano NL63/genética , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/transmisión , Niño , Femenino , Masculino , Preescolar , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/epidemiología , Lactante , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Estaciones del Año , Mutación , Adolescente
2.
Plant Physiol ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635971

RESUMEN

Rapid postharvest physiological deterioration (PPD) of cassava (Manihot esculenta Crantz) storage roots is a major constraint that limits the potential of this plant as a food and industrial crop. Extensive studies have been performed to explore the regulatory mechanisms underlying the PPD processes in cassava to understand their molecular and physiological responses. However, the exceptional functional versatility of alternative splicing (AS) remains to be explored during the PPD process in cassava. Here, we identified several aberrantly spliced genes during the early PPD stage. An in-depth analysis of AS revealed that the abscisic acid (ABA) biosynthesis pathway might serve as an additional molecular layer in attenuating the onset of PPD. Exogenous ABA application alleviated PPD symptoms through maintaining ROS generation and scavenging. Interestingly, the intron retention transcript of MeABA1 (ABA DEFICIENT 1) was highly correlated with PPD symptoms in cassava storage roots. RNA yeast three-hybrid and RNA immunoprecipitation assays showed that the serine/arginine-rich protein MeSCL33 (SC35-like splicing factor 33) binds to the precursor mRNA of MeABA1. Importantly, overexpressing MeSCL33 in cassava conferred improved PPD resistance by manipulating the AS and expression levels of MeABA1 and then modulating the endogenous ABA levels in cassava storage roots. Our results uncovered the pivotal role of the ABA biosynthesis pathway and RNA splicing in regulating cassava PPD resistance and proposed the essential roles of MeSCL33 for conferring PPD resistance, broadening our understanding of SR proteins in cassava development and stress responses.

3.
J Vet Res ; 68(1): 45-53, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38525220

RESUMEN

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) infection results in a serious disease, posing a huge economic threat to the global swine industry. The transient receptor potential mucolipin proteins (TRPMLs) have been shown to be strongly associated with virus infection and other physiological processes in humans, but their tissue distribution and responses to PRRSV in pigs remain unknown. Material and Methods: Quantitative reverse-transcription PCR analysis was undertaken to determine the optimal primer for TRPML expression detection and for quantifying that expression individually in different pig tissue samples. Meat Animal Research Center 145 (MARC-145) monkey kidney cells and the TRPML-specific activator mucolipin synthetic agonist 1 (ML-SA1) were used to reveal the relationship between TRPML and PRRSV-2 infection. Results: The best primers for each TRPML gene used in a fluorescence-based quantitative method were identified and TRPML1 was found to be highly expressed in the kidneys and liver of pigs, while TRPML2 and TRPML3 were observed to be primarily expressed in the kidney and spleen tissues. The expression of TRPML2 was upregulated with the rise in PRRSV-2 infection titre but not the expression of TRPML1 or TRPML3, and ML-SA1 inhibited PRRSV-2 in a dose-dependent manner. Conclusion: Our research revealed the gene expression of TRPMLs in pigs and identified that TRPML channels may act as key host factors against PRRSV infection, which could lead to new targets for the prevention and treatment of pig infectious diseases.

4.
Ecol Appl ; 34(1): e2826, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36840509

RESUMEN

Environmental DNA (eDNA) has increasingly been used to detect rare species (e.g., newly introduced nonindigenous species) in both terrestrial and aquatic ecosystems, often with distinct advantages over traditional methods. However, whether water eDNA signals can be used to inform invasion risks remains debatable owing to inherent uncertainties associated with the methods used and the varying conditions among study systems. Here, we sampled eDNA from canals of the central route of the South-to-North Water Diversion Project (hereafter SNWDP) in China to investigate eDNA distribution and efficacy to inform invasion risks in a unique lotic system. We first conducted a total of 16 monthly surveys in this system (two sites in the source reservoir and four sites in the main canal) to test if eDNA could be applied to detect an invasive, biofouling bivalve, the golden mussel Limnoperna fortunei. Second, we initiated a one-time survey in a sub-canal of the SNWDP using refined sampling (12 sites in ~22 km canal) and considered a few environmental predictors. We found that detection of target eDNA in the main canal was achieved up to 1100 km from the putative source population but was restricted to the warmer months (May-November). Detection probability exhibited a significant positive relationship with average daily minimum air temperature and with water temperature, consistent with the expected spawning season. eDNA concentration in the main canal generally fluctuated across months and sites and was generally higher in warmer months. Golden mussel eDNA concentration in the sub-canal decreased significantly with distance from the source and with increasing water temperature and became almost undetectable at ~22 km distance. Given the enormity of the SNWDP, golden mussels may eventually expand their distribution in the main canal, with established "bridgehead" populations facilitating further spread. Our findings suggest an elevated invasion risk of golden mussels in the SNWDP in warm months, highlighting the critical period for spread and, possibly, management.


Asunto(s)
Incrustaciones Biológicas , Bivalvos , ADN Ambiental , Animales , ADN Ambiental/genética , Agua , Ecosistema , Bivalvos/genética
5.
Nucleic Acids Res ; 52(D1): D1651-D1660, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37843152

RESUMEN

Tropical crops are vital for tropical agriculture, with resource scarcity, functional diversity and extensive market demand, providing considerable economic benefits for the world's tropical agriculture-producing countries. The rapid development of sequencing technology has promoted a milestone in tropical crop research, resulting in the generation of massive amount of data, which urgently needs an effective platform for data integration and sharing. However, the existing databases cannot fully satisfy researchers' requirements due to the relatively limited integration level and untimely update. Here, we present the Tropical Crop Omics Database (TCOD, https://ngdc.cncb.ac.cn/tcod), a comprehensive multi-omics data platform for tropical crops. TCOD integrates diverse omics data from 15 species, encompassing 34 chromosome-level de novo assemblies, 1 255 004 genes with functional annotations, 282 436 992 unique variants from 2048 WGS samples, 88 transcriptomic profiles from 1997 RNA-Seq samples and 13 381 germplasm items. Additionally, TCOD not only employs genes as a bridge to interconnect multi-omics data, enabling cross-species comparisons based on homology relationships, but also offers user-friendly online tools for efficient data mining and visualization. In short, TCOD integrates multi-species, multi-omics data and online tools, which will facilitate the research on genomic selective breeding and trait biology of tropical crops.


Asunto(s)
Productos Agrícolas , Bases de Datos Genéticas , Productos Agrícolas/genética , Transcriptoma , Genoma de Planta
6.
Front Plant Sci ; 14: 1298417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155853

RESUMEN

Ficus carica L. (dioecious), the most significant commercial species in the genus Ficus, which has been cultivated for more than 11,000 years and was one of the first species to be domesticated. Herein, we reported the most comprehensive F. carica genome currently. The contig N50 of the Orphan fig was 9.78 Mb, and genome size was 366.34 Mb with 13 chromosomes. Based on the high-quality genome, we discovered that F. carica diverged from Ficus microcarpa ~34 MYA, and a WGD event took place about 2─3 MYA. Throughout the evolutionary history of F. carica, chromosomes 2, 8, and 10 had experienced chromosome recombination, while chromosome 3 saw a fusion and fission. It is worth proposing that the chromosome 9 experienced both inversion and translocation, which facilitated the emergence of the F. carica as a new species. And the selections of F. carica for the genes of recombination chromosomal fragment are compatible with their goal of domestication. In addition, we found that the F. carica has the FhAG2 gene, but there are structural deletions and positional jumps. This gene is thought to replace the one needed for female common type F. carica to be pollinated. Subsequently, we conducted genomic, transcriptomic, and metabolomic analysis to demonstrate significant differences in the expression of CHS among different varieties of F. carica. The CHS playing an important role in the anthocyanin metabolism pathway of F. carica. Moreover, the CHS gene of F. carica has a different evolutionary trend compared to other Ficus species. These high-quality genome assembly, transcriptomic, and metabolomic resources further enrich F. carica genomics and provide insights for studying the chromosomes evolution, sexual system, and color characteristics of Ficus.

7.
Pharmacol Res ; 197: 106978, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37923027

RESUMEN

Animal venom is an important evolutionary innovation in nature. As one of the most representative animal venoms, scorpion venom contains an extremely diverse set of bioactive peptides. Scorpion venom peptides not only are 'poisons' that immobilize, paralyze, kill, or dissolve preys but also become important candidates for drug development and design. Here, the review focuses on the molecular diversity of scorpion venom peptides, their typical structural characteristics, and their multiple therapeutic or pharmaceutical applications in channelopathies, viral infections and cancers. Especially, the group of scorpion toxin TRPTx targeting transient receptor potential (TRP) channels is systematically summarized and worthy of attention because TRP channels play a crucial role in the regulation of homeostasis and the occurrence of diseases in human. We also further establish the potential relationship between the molecular characteristics and functional applications of scorpion venom peptides to provide a research basis for modern drug development and clinical utilization of scorpion venom resources.


Asunto(s)
Canalopatías , Neoplasias , Venenos de Escorpión , Virosis , Animales , Humanos , Venenos de Escorpión/uso terapéutico , Neoplasias/tratamiento farmacológico , Evolución Biológica
8.
Anal Methods ; 15(43): 5813-5822, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37870419

RESUMEN

Picornavirus hepatitis A virus (HAV) is a common cause of hepatitis worldwide. It is spread primarily through contaminated food and water or person-to-person contact. HAV I has been identified as the most common type of human HAV infection. Here, we have developed a cell-free toehold switch sensor for HAV I detection. We screened 10 suitable toehold switch sequences using NUPACK software, and the VP1 gene was used as the target gene. The optimal toehold switch sequence was selected by in vivo expression. The best toehold switch concentration was further found to be 20 nM in a cell-free system. 5 nM trigger RNA activated the toehold switch to generate visible green fluorescence. The minimum detection concentration decreased to 1 pM once combined with NASBA. HAV I trigger RNA could be detected accurately with excellent specificity. In addition, the cell-free toehold switch sensor was verified in HAV I entities. The successful construction of the cell-free toehold switch sensor provided a convenient, rapid, and accurate method for HAV I on-site detection, especially in developing countries, without the involvement of expensive facilities and additional professional operators.


Asunto(s)
Virus de la Hepatitis A , Hepatitis A , Humanos , Virus de la Hepatitis A/genética , Hepatitis A/diagnóstico , Virus de la Hepatitis A Humana/genética , ARN
9.
BMC Infect Dis ; 23(1): 467, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37442963

RESUMEN

BACKGROUND: To investigate the impact of the coronavirus disease 2019 (COVID-19) outbreak on the prevalence of respiratory viruses among pediatric patients with acute respiratory infections in Xuzhou from 2015-2021. METHODS: Severe acute respiratory infection (SARI) cases in hospitalized children were collected from 2015-2021 in Xuzhou, China. Influenza virus(IFV), respiratory syncytial virus (RSV), human parainfluenza virus type 3(hPIV-3), human rhinovirus (hRV), human adenovirus(hAdV), human coronavirus(hCoV) were detected by real-time fluorescence polymerase chain reaction(RT-qPCR), and the results were statistically analyzed by SPSS 23.0 software. RESULTS: A total of 1663 samples with SARI were collected from 2015-2021, with a male-to-female ratio of 1.67:1 and a total virus detection rate of 38.5% (641/1663). The total detection rate of respiratory viruses decreased from 46.2% (2015-2019) to 36% (2020-2021) under the control measures for COVID-19 (P < 0.01). The three viruses with the highest detection rates changed from hRV, RSV, and hPIV-3 to hRV, RSV, and hCoV. The epidemic trend of hPIV-3 and hAdV was upside down before and after control measures(P < 0.01); however, the epidemic trend of RV and RSV had not changed from 2015 to 2021(P > 0.05). After the control measures, the detection rate of hPIV-3 decreased in all age groups, and the detection rate of hCoV increased in all except the 1 ~ 3 years old group. CONCLUSIONS: Implementing control measures for COVID-19 outbreak curbed the spread of respiratory viruses among children as a whole. However, the epidemic of RV and RSV was not affected by the COVID-19 control policy.


Asunto(s)
COVID-19 , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Virus , Niño , Humanos , Masculino , Femenino , Lactante , Preescolar , Pandemias , Espera Vigilante , COVID-19/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , China/epidemiología , Virus de la Parainfluenza 1 Humana
10.
ACS Appl Mater Interfaces ; 15(24): 29330-29340, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37278592

RESUMEN

Flexible thermoelectric (TE) devices offer great potential for wearable thermal management and self-powered systems, but heat dissipation and electrical interconnection remain key challenges. In this study, we address these issues by integrating flexible TE devices with phase-change material (PCM) heatsinks and stretchable semi-liquid metal (semi-LM) interconnectors. The effectiveness of PCMs with varying melting points for temperature regulation in different environmental conditions is demonstrated, delivering cooling effects exceeding 10 °C. Furthermore, the utilization of semi-LMs instead of LMs enables excellent stretchability and efficient heat dissipation. Moreover, the TE devices generate power with a density of 7.3 µW/cm2 at an ambient temperature of 22 °C, making it an ideal power source for a wearable self-powered sensing system. Successful integration into garments and armbands confirms the practicality and adaptability of these flexible thermoelectric devices, establishing them as critical components for future wearables with superior resilience to daily wear and tear.

11.
ACS Nano ; 17(11): 10689-10700, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37191638

RESUMEN

In situ fabrication of wearable devices through coating approaches is a promising solution for the fast deployment of wearable devices and more adaptable devices for different sensing demands. However, heat, solvent, and mechanical sensitivity of biological tissues, along with personal compliance, pose strict requirements for coating materials and methods. To address this, a biocompatible and biodegradable light-curable conductive ink and an all-in-one flexible system that conducts in situ injection and photonic curing of the ink as well as monitoring of biophysiological information have been developed. The ink can be solidified through spontaneous phase changes and photonic cured to achieve a high mechanical strength of 7.48 MPa and an excellent electrical conductivity of 3.57 × 105 S/m. The flexible system contains elastic injection chambers embedded with specially designed optical waveguides to uniformly dissipate visible LED light throughout the chambers and rapidly cure the ink in 5 min. The resulting conductive electrodes offer intimate skin contact even with the existence of hair and work stably even under an acceleration of 8 g, leading to a robust wearable system capable of working under intense motion, heavy sweating, and varied surface morphology. Similar concepts may lead to various rapidly deployable wearable systems that offer excellent adaptability to different monitoring demands for the health tracking of large populations.


Asunto(s)
Tinta , Dispositivos Electrónicos Vestibles , Electrodos , Conductividad Eléctrica
12.
Viruses ; 15(5)2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37243223

RESUMEN

Viral myocarditis (VMC) is a common disease characterized by cardiac inflammation. AC-73, an inhibitor of CD147, disrupts the dimerization of CD147, which participates in the regulation of inflammation. To explore whether AC-73 could alleviate cardiac inflammation induced by CVB3, mice were injected intraperitoneally with AC-73 on the fourth day post-infection (dpi) and sacrificed on the seventh dpi. Pathological changes in the myocardium, T cell activation or differentiation, and expression of cytokines were analyzed using H&E staining, flow cytometry, fluorescence staining and multiplex immunoassay. The results showed that AC-73 alleviated cardiac pathological injury and downregulated the percentage of CD45+CD3+ T cells in the CVB3-infected mice. The administration of AC-73 reduced the percentage of activated CD4+ and CD8+ T cells (CD69+ and/or CD38+) in the spleen, while the percentage of CD4+ T cell subsets in the spleen was not changed in the CVB3-infected mice. In addition, the infiltration of activated T cells (CD69+) and macrophages (F4/80+) in the myocardium also decreased after the AC-73 treatment. The results also showed that AC-73 inhibited the release of many cytokines and chemokines in the plasma of the CVB3-infected mice. In conclusion, AC-73 mitigated CVB3-induced myocarditis by inhibiting the activation of T cells and the recruitment of immune cells to the heart. Thus, CD147 may be a therapeutic target for virus-induced cardiac inflammation.


Asunto(s)
Infecciones por Coxsackievirus , Miocarditis , Ratones , Animales , Linfocitos T CD8-positivos/metabolismo , Infecciones por Coxsackievirus/metabolismo , Citocinas/metabolismo , Inflamación , Enterovirus Humano B/fisiología , Ratones Endogámicos BALB C
13.
Hortic Res ; 10(4): uhad027, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37090094

RESUMEN

Fragaria vesca, commonly known as wild or woodland strawberry, is the most widely distributed diploid Fragaria species and is native to Europe and Asia. Because of its small plant size, low heterozygosity, and relative ease of genetic transformation, F. vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011. However, its genomic contribution to octoploid cultivated strawberry remains a long-standing question. Here, we de novo assembled and annotated a telomere-to-telomere, gap-free genome of F. vesca 'Hawaii 4', with all seven chromosomes assembled into single contigs, providing the highest completeness and assembly quality to date. The gap-free genome is 220 785 082 bp in length and encodes 36 173 protein-coding gene models, including 1153 newly annotated genes. All 14 telomeres and seven centromeres were annotated within the seven chromosomes. Among the three previously recognized wild diploid strawberry ancestors, F. vesca, F. iinumae, and F. viridis, phylogenomic analysis showed that F. vesca and F. viridis are the ancestors of the cultivated octoploid strawberry F. × ananassa, and F. vesca is its closest relative. Three subgenomes of F. × ananassa belong to the F. vesca group, and one is sister to F. viridis. We anticipate that this high-quality, telomere-to-telomere, gap-free F. vesca genome, combined with our phylogenomic inference of the origin of cultivated strawberry, will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.

14.
Microbiol Spectr ; 11(3): e0534022, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37074196

RESUMEN

Tick-borne viruses (TBVs) have attracted increasingly global public health attention. In this study, the viral compositions of five tick species, Haemaphysalis flava, Rhipicephalus sanguineus, Dermacentor sinicus, Haemaphysalis longicornis, and Haemaphysalis campanulata, from hedgehogs and hares in Qingdao, China, were profiled via metagenomic sequencing. Thirty-six strains of 10 RNA viruses belonging to 4 viral families, including 3 viruses of Iflaviridae, 4 viruses of Phenuiviridae, 2 viruses of Nairoviridae, and 1 virus of Chuviridae, were identified in five tick species. Three novel viruses of two families, namely, Qingdao tick iflavirus (QDTIFV) of the family of Iflaviridae and Qingdao tick phlebovirus (QDTPV) and Qingdao tick uukuvirus (QDTUV) of the family of Phenuiviridae, were found in this study. This study shows that ticks from hares and hedgehogs in Qingdao harbored diverse viruses, including some that can cause emerging infectious diseases, such as Dabie bandavirus. Phylogenetic analysis revealed that these tick-borne viruses were genetically related to viral strains isolated previously in Japan. These findings shed new light on the cross-sea transmission of tick-borne viruses between China and Japan. IMPORTANCE Thirty-six strains of 10 RNA viruses belonging to 4 viral families, including 3 viruses of Iflaviridae, 4 viruses of Phenuiviridae, 2 viruses of Nairoviridae, and 1 virus of Chuviridae, were identified from five tick species in Qingdao, China. A diversity of tick-borne viruses from hares and hedgehogs in Qingdao was found in this study. Phylogenetic analysis showed that most of these TBVs were genetically related to Japanese strains. These findings indicate the possibility of the cross-sea transmission of TBVs between China and Japan.


Asunto(s)
Liebres , Ixodidae , Virus ARN , Garrapatas , Virus , Animales , Erizos , Filogenia , Virus ARN/genética
15.
Front Plant Sci ; 14: 1080666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056497

RESUMEN

Potato is one of the world's most important food crops, with a time-consuming breeding process. In this study, we performed a genome-wide association (GWAS) analysis of the two important traits of potato tuber shape and eye depth, using the tetraploid potato genome (2n=4x=48) as a reference. A total of 370 potatoes were divided into three subgroups based on the principal component analysis and evolutionary tree analysis. The genetic diversity within subgroups is low (5.18×10-5, 4.36×10-5 and 4.24×10-5). Genome-wide linkage disequilibrium (LD) analysis showed that their LD is about 60 Kb. GWAS analysis identified that 146 significant single nucleotide polymorphism (SNP) loci at Chr01A1:34.44-35.25 Mb and Chr02A1:28.35-28.54 Mb regions are significantly associated with potato tuber shape, and that three candidate genes that might be related to potato tuber traits, PLATZ transcription factor, UTP-glucose-1-phosphate uridylyltransferase and FAR1 DNA-binding domain, are in the association region of Chr02A1. GWAS analysis identified 53 significant SNP loci at Chr05A2: 49.644-50.146 Mb and Chr06A2: 25.866-26.384 Mb regions with robust associations with potato tuber eye depth. Hydrolase and methyltransferases are present in the association region of Chr05A2, and three CYPs are present in the association region of Chr06A2. Our findings suggested that these genes are closely associated with potato tuber shape and eye depth. Our study identified molecular markers and candidate genes for improving tetraploid potato tuber shape and eye depth and provided ideas and insights for tetraploid potato breeding.

16.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902116

RESUMEN

The areca palm (Areca catechu L.) is one of the most economically important palm trees in tropical areas. To inform areca breeding programs, it is critical to characterize the genetic bases of the mechanisms that regulate areca fruit shape and to identify candidate genes related to fruit-shape traits. However, few previous studies have mined candidate genes associated with areca fruit shape. Here, the fruits produced by 137 areca germplasms were divided into three categories (spherical, oval, and columnar) based on the fruit shape index. A total of 45,094 high-quality single-nucleotide polymorphisms (SNPs) were identified across the 137 areca cultivars. Phylogenetic analysis clustered the areca cultivars into four subgroups. A genome-wide association study that used a mixed linear model identified the 200 loci that were the most significantly associated with fruit-shape traits in the germplasms. In addition, 86 candidate genes associated with areca fruit-shape traits were further mined. Among the proteins encoded by these candidate genes were UDP-glucosyltransferase 85A2, the ABA-responsive element binding factor GBF4, E3 ubiquitin-protein ligase SIAH1, and LRR receptor-like serine/threonine-protein kinase ERECTA. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the gene that encoded UDP-glycosyltransferase, UGT85A2, was significantly upregulated in columnar fruits as compared to spherical and oval fruits. The identification of molecular markers that are closely related to fruit-shape traits not only provides genetic data for areca breeding, but it also provides new insights into the shape formation mechanisms of drupes.


Asunto(s)
Areca , Frutas , Areca/anatomía & histología , Areca/clasificación , Areca/genética , Frutas/anatomía & histología , Frutas/clasificación , Frutas/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Filogenia , Fitomejoramiento , Polimorfismo de Nucleótido Simple
17.
Gene ; 864: 147291, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36813061

RESUMEN

The transient receptor potential mucolipin (TRPML) subfamily in mammalian has three members, namely TRPML1, TRPML2, and TRPML3, who play key roles in regulating intracellular Ca2+ homeostasis, endosomal pH, membrane trafficking and autophagy. Previous studies had shown that three TRPMLs are closely related to the occurrence of pathogen invasion and immune regulation in some immune tissues or cells, but the relationship between TRPMLs expression and pathogen invasion in lung tissue or cell remains elusive. Here, we investigated the expression distribution of three TRPML channels in mouse different tissues by qRT-PCR, and then found that all three TRPMLs were highly expressed in the mouse lung tissue, as well as mouse spleen and kidney tissues. The expression of TRPML1 or TRPML3 in all three mouse tissues had a significant down-regulation after the treatment of Salmonella or LPS, but TRPML2 expression showed a remarkable increase. Consistently, TRPML1 or TRPML3 but not TRPML2 in A549 cells also displayed a decreased expression induced by LPS stimulation, which shared a similar regulation pattern in the mouse lung tissue. Furthermore, the treatment of the TRPML1 or TRPML3 specific activator induced a dose-dependent up-regulation of inflammatory factors IL-1ß, IL-6 and TNFα, suggesting that TRPML1 and TRPML3 are likely to play an important role in immune and inflammatory regulation. Together, our study identified the gene expression of TRPMLs induced by pathogen stimulation in vivo and in vitro, which may provide novel targets for innate immunity or pathogen regulation.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Animales , Ratones , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Lipopolisacáridos/metabolismo , Homeostasis , Expresión Génica , Lisosomas , Mamíferos/genética
18.
Genes (Basel) ; 14(2)2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36833433

RESUMEN

Plant height is an important characteristic, the modification of which can improve the ability of stress adaptation as well as the yield. In this study, genome-wide association analysis was performed for plant height traits in 370 potato cultivars using the tetraploid potato genome as a reference. A total of 92 significant single nucleotide polymorphism (SNP) loci for plant height were obtained, which were particularly significant in haplotypes A3 and A4 on chromosome 1 and A1, A2, and A4 on chromosome 5. Thirty-five candidate genes were identified that were mainly involved in the gibberellin and brassinolide signal transduction pathways, including the FAR1 gene, methyltransferase, ethylene response factor, and ubiquitin protein ligase. Among them, PIF3 and GID1a were only present on chromosome 1, with PIF3 in all four haplotypes and GID1a in haplotype A3. This could lead to more effective genetic loci for molecular marker-assisted selection breeding as well as more precise localization and cloning of genes for plant height traits in potatoes.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fenotipo , Haplotipos
19.
Biosens Bioelectron ; 224: 115052, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603285

RESUMEN

Toxicity screening and risk assessment of an overwhelmingly large and ever-increasing number of chemicals are vitally essential for ecological safety and human health. Genotoxicity is particularly important because of its association with mutagenicity, carcinogenicity and cancer. Phosphorylated histone H2AX (γH2AX) is an early sensitive genotoxic biomarker. It is therefore highly desirable to develop analytical methods for the detection of trace γH2AX to enable screening and assessment of genotoxicity. Here, we developed a novel cathodic photoelectrochemical (PEC) immunoassay with dual signal amplification for the rapid and ultrasensitive detection of γH2AX in cell lysates. A sandwich immuno-reaction targeting γH2AX was first carried out on a 96-well plate, using a secondary antibody/gold nanoparticle/glucose oxidase conjugate as the labeled detection antibody. The conjugate increased the production of H2O2 and thus provided the first mechanism of signal amplification. The immuno-reaction product containing H2O2 was then detected on a photocathode prepared from Bi2+xWO6 rich in oxygen vacancies, with H2O2 acting as electron acceptor. The oxygen vacancies acted as both adsorption and activation sites of H2O2 and thus enhanced the photocurrent, which provided another mechanism of signal amplification. As a result, an ultrasensitive immunoassay for γH2AX determination was established with a limit of detection of 6.87 pg/mL (S/N = 3) and a wide linear range from 0.01 to 500 ng/mL. The practicability of this assay was verified by detecting γH2AX in cell lysates exposed to known genotoxic chemicals. Our work offers a promising tool for the screening of genotoxic chemicals and opening a new avenue toward environmental risk assessment.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Peróxido de Hidrógeno , Oro , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Biomarcadores , Daño del ADN , Técnicas Electroquímicas/métodos , Límite de Detección
20.
Plants (Basel) ; 13(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38202403

RESUMEN

Sapindaceae is an economically important family of Sapindales and includes many fruit crops. The dominant transport and storage form of photoassimilates in higher plants is sucrose. Sucrose transporter proteins play an irreplaceable role in the loading, transportation, unloading, and distribution of sucrose. A few SUT (sugar transporter) family genes have been identified and characterized in various plant species. In this study, 15, 15, and 10 genes were identified in litchi, longan, and rambutan, respectively, via genome-wide screening. These genes were divided into four subgroups based on phylogenetics. Gene duplication analysis suggested these genes underwent potent purifying selection and tandem duplications during evolution. The expression levels of SlSut01 and SlSut08 were significantly increased in the fruits of Sapindaceae members. The homologs of these two genes in longan and rambutan were also highly expressed in the fruits. The expression pattern of SUTs in three organs of the two varieties was also explored. Subcellular colocalization experiments revealed that the proteins encoded by both genes were present in the plasma membrane. This report provides data for the functional study of SUTs in litchi and provides a basis for screening sugar accumulation-related genes in fruits of Sapindaceae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...