Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theranostics ; 14(6): 2544-2559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646641

RESUMEN

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Condrocitos , Curación de Fractura , Osteogénesis , Células Madre , Canales Catiónicos TRPP , Animales , Curación de Fractura/fisiología , Ratones , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Condrocitos/metabolismo , Células Madre/metabolismo , Osteogénesis/fisiología , Ratones Noqueados , Condrogénesis/fisiología , Periostio/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiología , Modelos Animales de Enfermedad , Masculino
2.
Front Endocrinol (Lausanne) ; 13: 899731, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060945

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), hallmarked by liver steatosis, is becoming a global concern, but effective and safe drugs for NAFLD are still lacking at present. Parathyroid hormone (PTH), the only FDA-approved anabolic treatment for osteoporosis, is important in calcium-phosphate homeostasis. However, little is known about its potential therapeutic effects on other diseases. Here, we report that intermittent administration of PTH ameliorated non-alcoholic liver steatosis in diet-induced obese (DIO) mice and db/db mice, as well as fasting-induced hepatic steatosis. In vitro, PTH inhibits palmitic acid-induced intracellular lipid accumulation in a parathyroid hormone 1 receptor (PTH1R)-dependent manner. Mechanistically, PTH upregulates the expression of genes involved in lipid ß-oxidation and suppresses the expression of genes related to lipid uptake and de novo lipogenesis by activating the cAMP/PKA/CREB pathway. Taken together, our current finding proposes a new therapeutic role of PTH on NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Hormona Paratiroidea , Animales , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Lípidos , Lipogénesis , Ratones , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/uso terapéutico , Receptor de Hormona Paratiroídea Tipo 1/metabolismo
3.
Cell Prolif ; 54(8): e13095, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34254370

RESUMEN

OBJECTIVES: Scavenger receptor class A, member 3 (Scara3) was involved in adipogenesis. However, the effect of Scara3 on the switch between osteogenesis and adipogenesis of bone marrow mesenchymal stem cells (BMSCs) remains elusive. MATERIALS AND METHODS: The correlations between SCARA3 with the osteogenic-related were analysed based on the GTEx database. The effects of Scara3 on osteogenic or adipogenic differentiation of BMSCs were evaluated by qPCR, Western blot (WB) and cell staining. The mechanisms of Scara3 regulating Foxo1 and autophagy were validated by co-expression analysis, WB and immunofluorescence. In vivo, Scara3 adeno-associated virus was injected into intra-bone marrow of the aged mice and ovariectomized (OVX) mice whose phenotypes were confirmed by micro-CT, calcein double labelling and immunochemistry (HE and OCN staining). RESULTS: SCARA3 was positively correlated with osteogenic-related genes. Scara3 expression gradually decreased during adipogenesis but increased during osteogenesis. Moreover, the deletion of Scara3 favoured adipogenesis over osteogenesis, whereas overexpression of Scara3 significantly enhanced the osteogenesis at the expense of adipogenesis. Mechanistically, Scara3 controlled the cell fate by promoting Foxo1 expression and autophagy flux. In vivo, Scara3 promoted bone formation and reduced bone marrow fat accumulation in OVX mice. In the aged mice, Scara3 overexpression alleviated bone loss as well. CONCLUSIONS: This study suggested that Scara3 regulated the switch between adipocyte and osteoblast differentiation, which represented a potential therapeutic target for bone loss and osteoporosis.


Asunto(s)
Adipocitos/citología , Proteína Forkhead Box O1/metabolismo , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Receptores Depuradores de Clase A/metabolismo , Adipocitos/metabolismo , Adipogénesis , Envejecimiento , Animales , Autofagia , Diferenciación Celular , Células Cultivadas , Femenino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteogénesis , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Depuradores de Clase A/antagonistas & inhibidores , Receptores Depuradores de Clase A/genética
4.
Cell Prolif ; 52(4): e12624, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31038249

RESUMEN

OBJECTIVES: Excessive oxidative stress and diminished antioxidant defences could contribute to age-related tissue damage and various diseases including age-related osteoporosis. Dendrobium officinale polysaccharides (DOPs), a major ingredient from a traditional Chinese medicine, have a great potential of antioxidative activity. In this study, we explore the role of DOP in age-related osteoporosis that remains elusive. MATERIALS AND METHODS: Oxidative stimulation and DOP were used to treat bone marrow mesenchymal stem cells (BMSCs), whose lineage commitment was measured by adipogenic- and osteoblastic-induced differentiation analysis. The oxidative stress and antioxidant capacity of BMSCs under the treatment of DOP were analysed by the level of MDA, SOD. Related mechanism studies were confirmed by qRT-PCR, Western blotting and siRNA transfection. DOP was orally administrated in aged mice whose phenotype was confirmed by micro-CT, immunofluorescence, immunochemistry and calcein double-labelling analysis. RESULTS: Dendrobium officinale polysaccharide treatment markedly increased osteogenic differentiation of BMSCs, while inhibiting adipogenic differentiation. In vitro, DOP could rescue H2O2-induced switch of BMSCs differentiation fate. However, this effect was abolished in BMSCs when interfered with Nrf2 siRNA. Furthermore, administration of DOP to aged mice significantly increased the bone mass and reduced the marrow adipose tissue (MAT) accompanied with decreased oxidative stress of BMSCs. CONCLUSIONS: Our study reveals that DOP can attenuate bone loss and MAT accumulation through NRF2 antioxidant signalling, which may represent as potential therapeutic agent for age-related osteoporosis.


Asunto(s)
Adipogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Dendrobium/química , Osteogénesis/efectos de los fármacos , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Adulto , Anciano , Animales , Antioxidantes/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Adulto Joven
5.
Biomed Res Int ; 2015: 624037, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26221600

RESUMEN

We previously reported that Runx2/miR-3960/miR-2861 regulatory feedback loop stimulates osteoblast differentiation. However, the effect of this feedback loop on the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) remains unclear. Our recent study showed that miR-2861 and miR-3960 expression increases significantly during ß-glycerophosphate-induced osteogenic transdifferentiation of VSMCs. Overexpression of miR-2861 or miR-3960 in VSMCs enhances ß-glycerophosphate-induced osteoblastogenesis, whereas inhibition of miR-2861 or miR-3960 expression attenuates it. MiR-2861 or miR-3960 promotes osteogenic transdifferentiation of VSMCs by targeting histone deacetylase 5 or Homeobox A2, respectively, resulting in increased runt-related transcription factor 2 (Runx2) protein production. Furthermore, overexpression of Runx2 induces miR-2861 and miR-3960 transcription, and knockdown of Runx2 attenuates ß-glycerophosphate-induced miR-2861 and miR-3960 transcription in VSMCs. Thus, our data show that Runx2/miR-3960/miR-2861 positive feedback loop plays an important role in osteogenic transdifferentiation of VSMCs and contributes to vascular calcification.


Asunto(s)
Transdiferenciación Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Retroalimentación Fisiológica , MicroARNs/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Osteogénesis/genética , Animales , Transdiferenciación Celular/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glicerofosfatos/farmacología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Transcripción Genética/efectos de los fármacos
6.
J Clin Invest ; 125(4): 1509-22, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25751060

RESUMEN

Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra-bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss.


Asunto(s)
Adipocitos/citología , Envejecimiento/genética , Células de la Médula Ósea/citología , MicroARNs/fisiología , Osteoblastos/citología , Osteogénesis/fisiología , Osteoporosis/prevención & control , Regiones no Traducidas 3'/genética , Tejido Adiposo/citología , Envejecimiento/metabolismo , Animales , Aptámeros de Nucleótidos/farmacología , Secuencia de Bases , Densidad Ósea/genética , Densidad Ósea/fisiología , Células de la Médula Ósea/metabolismo , Remodelación Ósea/fisiología , Proteínas Portadoras/antagonistas & inhibidores , Diferenciación Celular/genética , Histona Desacetilasas , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , MicroARNs/análisis , MicroARNs/genética , Datos de Secuencia Molecular , Osteocalcina/análisis , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/fisiopatología , Proteína Asociada al mTOR Insensible a la Rapamicina , Proteínas Represoras/antagonistas & inhibidores , Factor de Transcripción Sp7 , Factores de Transcripción/fisiología
7.
J Biol Chem ; 286(14): 12328-39, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21324897

RESUMEN

Our recent study showed that miR-2861 promotes osteoblast differentiation by targeting histone deacetylase 5, resulting in increased runt-related transcription factor 2 (Runx2) protein production. Here we identified another new microRNA (miRNA) (miR-3960) that played a regulatory role in osteoblast differentiation through a regulatory feedback loop with miR-2861. miR-3960 and miR-2861 were found clustered at the same loci. miR-3960 was transcribed during bone morphogenic protein 2 (BMP2)-induced osteogenesis of ST2 stromal cells. Overexpression of miR-3960 promoted BMP2-induced osteoblastogenesis. However, the inhibition of miR-3960 expression attenuated the osteoblastogenesis. Homeobox A2 (Hoxa2), a repressor of Runx2 expression, was confirmed to be a target of miR-3960. Electrophoretic mobility shift assay and chromatin immunoprecipitation experiments confirmed that Runx2 bound to the promoter of the miR-3960/miR-2861 cluster. Furthermore, overexpression of Runx2 induced miR-3960/miR-2861 transcription, and block of Runx2 expression attenuated BMP2-induced miR-3960/miR-2861 transcription. Here we report that miR-3960 and miR-2861, transcribed together from the same miRNA polycistron, both function in osteoblast differentiation through a novel Runx2/miR-3960/miR-2861 regulatory feedback loop. Our findings provide new insights into the roles of miRNAs in osteoblast differentiation.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Homeodominio/metabolismo , MicroARNs/fisiología , Osteoblastos/citología , Animales , Animales Recién Nacidos , Northern Blotting , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Inmunoprecipitación de Cromatina , Biología Computacional , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Ensayo de Cambio de Movilidad Electroforética , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Osteoblastos/metabolismo , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...