Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 165: 112486, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869499

RESUMEN

Cultured fat is inducing adipose progenitor cells (APCs) to differentiate into mature adipocytes for consumption. The traditional adipogenic differentiation cocktail, including insulin, dexamethasone, indomethacin, isobutylmethylxanthine and rosiglitazone, has potential food safety problems in cultured fat. Therefore, the detection of these residues is necessary to ensure food safety. In this research, a method of high performance liquid chromatography (HPLC) was established to quantitatively analyze the potential residual content of dexamethasone, indomethacin, isobutylmethylxanthine and rosiglitazone in cultured fat and medium. Quantitative analysis showed that the content of four residues in cultured fat decreased to zero on Day 10. Subsequently, enzyme-linked immunosorbent assay (ELISA) was performed to detect the insulin content in the cultured fat and found that the insulin content in the cultured fat on Day 10 was 2.78 ± 0.21 µg/kg. After soaking with phosphate buffered saline (PBS), the insulin content decreased to 1.88 ± 0.54 µg/kg. In conclusion, this research provided an effective approach to clarify the content of potential residual components in cultured fat and it will provide reference for the safety of cultured fat in the future.


Asunto(s)
Inocuidad de los Alimentos , Insulina , Cromatografía Líquida de Alta Presión , Rosiglitazona , Diferenciación Celular , Ensayo de Inmunoadsorción Enzimática , Indometacina , Dexametasona
2.
Food Res Int ; 166: 112606, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914351

RESUMEN

Cultured meat is an efficient, safe and sustainable meat production technology. Adipose-derived stem cell (ADSC) is a promising cell type for cultured meat. In vitro, obtaining numerous of ADSCs is a pivotal step for cultured meat. In this research, we demonstrated that the proliferation and adipogenic differentiation of ADSCs significantly decreased during serial passage. Then, senescence ß-galactosidase (SA-ß-gal) staining showed that the positive rate of P9 ADSCs was 7.74-fold than P3 ADSCs. Subsequently, RNA sequencing (RNA-seq) was performed for P3 and P9 ADSCs and found that PI3K-AKT pathway was up-regulated, but cell cycle and DNA repair pathway were down-regulated in P9 ADSCs. Then, N-Acetylcysteine (NAC) was added during long-term expansion and showed that NAC enhanced the ADSCs proliferation and maintained adipogenic differentiation. Finally, RNA-seq was performed for P9 ADSCs cultured with or without NAC and showed that NAC restored the cell cycle and DNA repair pathway in P9 ADSCs. These results highlighted that NAC was an excellent supplement for large-scale expansion of porcine ADSCs for cultured meat.


Asunto(s)
Acetilcisteína , Tejido Adiposo , Animales , Porcinos , Tejido Adiposo/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/metabolismo , Células Madre/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proliferación Celular
3.
Arch Orthop Trauma Surg ; 135(9): 1201-10, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26141534

RESUMEN

INTRODUCTION: Spinal cord injury may be related to excessive distraction of the spinal cord during surgical correction of spinal deformities by vertebral column resection. This study aimed to investigate how vertebral column distraction influences spinal cord volume to establish the safe range in a goat model. MATERIALS AND METHODS: A vertebral column resection was performed on the tenth thoracic vertebra of 11 goats. The spinal cord was distracted until the somatosensory evoked potential signals were decreased to 50 % from baseline amplitude or were delayed by 10 % of the baseline peak latency. The osteotomy segment was stabilized with a PEEK mesh cage filled with bone graft, and the pedicle screws on the rods were then tightened in this position. Spinal cord volume was calculated using Mimics software, and T10 height, disk height, osteotomy segment height, and spinal segment height were measured using the MRI image workstation. RESULTS: Three goats were excluded, and data obtained from the eight remaining goats were analyzed. The safe limit of distraction distance was 11.8 ± 3.65 mm, and the distraction distance was strongly correlated with the difference between the pre- and postoperative measurements (d value) of spinal cord volume per 1 mm of osteotomy segment height (r = -0.952, p < 0.001), but was not correlated with T10 body height (r = 0.16, p = 0.71), spinal segment height (r = 0.29, p = 0.49), disk height (r = -0.12, p = 0.98), or the d value (pre-post) of spinal cord volume per 1 mm of spinal segment height (r = 0.45, p = 0.26). The mean d value (pre-post) of spinal cord volume per 1 mm of osteotomy segment height was 10.05 ± 0.02 mm(3) (range 10.02-10.08 mm(3)). CONCLUSION: The maximum change in spinal cord volume per 1-mm change in height was in the osteotomy segment, and its safe limit was 10.05 ± 0.02 mm(3). The safe limit of spinal cord distraction can be calculated using the spinal cord volume per unit 1-mm change in height.


Asunto(s)
Vértebras Torácicas/patología , Vértebras Torácicas/cirugía , Animales , Potenciales Evocados Somatosensoriales , Cabras , Complicaciones Intraoperatorias/etiología , Complicaciones Intraoperatorias/prevención & control , Imagen por Resonancia Magnética , Modelos Animales , Osteotomía , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Curvaturas de la Columna Vertebral/cirugía
4.
PLoS One ; 10(5): e0127624, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26001196

RESUMEN

Vertebral column resection is associated with a risk of spinal cord injury. In the present study, using a goat model, we aimed to investigate the relationship between changes in spinal cord volume and spinal cord injury due to spinal shortening, and to quantify the spinal cord volume per 1-mm height in order to clarify a safe limit for shortening. Vertebral column resection was performed at T10 in 10 goats. The spinal cord was shortened until the somatosensory-evoked potential was decreased by 50% from the baseline amplitude or delayed by 10% relative to the baseline peak latency. A wake-up test was performed, and the goats were observed for two days postoperatively. Magnetic resonance imaging was used to measure the spinal cord volume, T10 height, disc height, osteotomy segment height, and spinal segment height pre- and postoperatively. Two of the 10 goats were excluded, and hence, only data from eight goats were analyzed. The somatosensory-evoked potential of these eight goats demonstrated meaningful changes. With regard to neurologic function, five and three goats were classified as Tarlov grades 5 and 4 at two days postoperatively. The mean shortening distance was 23.6 ± 1.51 mm, which correlated with the d-value (post-pre) of the spinal cord volume per 1-mm height of the osteotomy segment (r = 0.95, p < 0.001) and with the height of the T10 body (r = 0.79, p = 0.02). The mean d-value (post-pre) of the spinal cord volume per 1-mm height of the osteotomy segment was 142.87 ± 0.59 mm3 (range, 142.19-143.67 mm3). The limit for shortening was approximately 106% of the vertebral height. The mean volumes of the osteotomy and spinal segments did not significantly change after surgery (t = 0.310, p = 0.765 and t = 1.241, p = 0.255, respectively). Thus, our results indicate that the safe limit for shortening can be calculated using the change in spinal cord volume per 1-mm height.


Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Traumatismos de la Médula Espinal/patología , Médula Espinal/patología , Animales , Modelos Animales de Enfermedad , Cabras , Laminectomía , Imagen por Resonancia Magnética , Tamaño de los Órganos , Médula Espinal/fisiopatología , Médula Espinal/cirugía , Traumatismos de la Médula Espinal/fisiopatología , Vértebras Torácicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...