Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2022: 6986445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466092

RESUMEN

Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide. Ferroptosis is emerging as an effective target for tumor treatment as it has been shown to potentiate cell death in some malignancies. However, it remains unclear whether histone phosphorylation events, an epigenetic mechanism that regulates transcriptional expression, are involved in ferroptosis. Our study found that supplementation with anisomycin, an agonist of p38 mitogen-activated protein kinase (MAPK), induced ferroptosis in HCC cells, and the phosphorylation of histone H3 on serine 10 (p-H3S10) was participated in anisomycin-induced ferroptosis. To investigate the anticancer effects of anisomycin-activated p38 MAPK in HCC, we analyzed cell viability, colony formation, cell death, and cell migration in Hep3B and HCCLM3 cells. The results showed that anisomycin could significantly suppress HCC cell colony formation and migration and induce HCC cell death. The hallmarks of ferroptosis, such as abnormal accumulation of iron and elevated levels of lipid peroxidation and malondialdehyde, were detected to confirm the ability of anisomycin to promote ferroptosis. Furthermore, coincubation with SB203580, an inhibitor of activated p38 MAPK, partially rescued anisomycin-induced ferroptosis. And the levels of p-p38 MAPK and p-H3S10 were successively increased by anisomycin treatment. The relationship between p-H3S10 and ferroptosis was revealed by ChIP sequencing. The reverse transcription PCR and immunofluorescence results showed that NCOA4 was upregulated both in mRNA and protein levels after anisomycin treatment. And by C11-BODIPY staining, we found that anisomycin-induced lipid reactive oxygen species was reduced after NCOA4 knockdown. In conclusion, the anisomycin-activated p38 MAPK promoted ferroptosis of HCC cells through H3S10 phosphorylation.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Fosforilación , Anisomicina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Serina , Histonas , Factores de Transcripción
2.
Theranostics ; 12(14): 6189-6206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36168627

RESUMEN

Rationale: Accumulating evidence shows that Rho-GTPase-activating proteins (RhoGAPs) exert suppressive roles in cancer cell proliferation and metastasis. However, no study has systematically investigated the clinical significance of RhoGAPs and analyzed the functions of ARHGAP24 in hepatocellular carcinoma (HCC). Methods: The relationship between RhoGAP expression and HCC prognosis was investigated via using The Cancer Genome Atlas and Gene Expression Omnibus databases. ARHGAP24 expression was detected by reverse transcription-polymerase chain reaction, western blot and immunohistochemistry staining assays. Moreover, in vitro assays including cell counting kit-8, colony formation, wound healing and Transwell assays, and in vivo tumor growth and pulmonary metastases evaluations were conducted to evaluate the biological function of ARHGAP24 in HCC. Liquid chromatography-tandem mass spectrometry, co-immunoprecipitation, GTPase activation, ubiquitination, and luciferase reporter assays and bioinformatics analysis were carried out to gain insights into the mechanisms underlying the tumor-suppressive function of ARHGAP24. Results: ARHGAP24 expression was dramatically decreased in HCC tissues, and low ARHGAP24 expression was an independent poor prognostic indicator for progression-free survival in HCC patients. ARHGAP24 overexpression significantly inhibited cell proliferation, migration and invasion, while knockdown of ARHGAP24 exerted the opposite effects. Through Gene Set Enrichment Analysis (GSEA), we found ARHGAP24 mainly suppressed HCC cell proliferation and invasion by attenuating ß-catenin transactivation and blocking ß-catenin signaling could effectively abolish the promotional effects of ARHGAP24 knockdown in HCC cells. Notably, GAP-deficient mutant of ARHGAP24 exerted similar inhibitory effects as the wild-type did, indicating suppressive function of ARHGAP24 was independent of its RhoGAP activity. Moreover, we identified pyruvate kinase M2 (PKM2) as a new binding partner of ARHGAP24, which recruited a novel E3 ligase (WWP1) and subsequently promoted PKM2 degradation. WWP1 knockdown significantly reduced the inhibitory function of ARHGAP24, and the C-terminal fragments of ARHGAP24 (amino acids 329 - 430 and 631 - 748) bound directly to WWP1 and PKM2 (amino acids 388 - 531), respectively. Conclusions: Our data indicate that ARHGAP24 may be an independent prognostic indicator for HCC. It is a critical suppressor of HCC that recruits WWP1 for PKM2 degradation. Targeting the ARHGAP24/WWP1/PKM2/ß-catenin axis may provide new insights into HCC prevention and treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Aminoácidos/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , GTP Fosfohidrolasas/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Invasividad Neoplásica/genética , Piruvato Quinasa/genética , Activación Transcripcional/genética , Ubiquitina-Proteína Ligasas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
3.
Front Immunol ; 13: 831101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371079

RESUMEN

Background: Inhibitory immune checkpoint proteins promote tumor immune escape and are associated with inferior patient outcome. However, the biological functions and regulatory roles of one of its members, HHLA2, in the tumor immune microenvironment have not been explored. Methods: RandomForest analyses (371 cases), qRT-PCR (15 cases), and immunohistochemical staining (189 cases) were used to validate the prognostic value of HHLA2 in hepatocellular carcinoma (HCC) patients. Bioinformatic analyses were further performed to explore the biological functions and potential signaling pathways affected by HHLA2. Moreover, ESTIMATE, single sample gene set enrichment analysis, CIBERSORT, TIMER, and other deconvolution methods were used to analyze the composition and infiltration level of immune cells. Multiplex immunofluorescence assays were employed to validate the fractions of suppressive immune cells, and HHLA2-related molecular alterations were investigated. Finally, the clinical response to chemotherapy and immune checkpoint blockade was predicted by TIDE, Submap, and several other in silico analyses. Results: RandomForest analysis revealed that HHLA2 was the most important inhibitory immune checkpoint associated with HCC patient prognosis (relative importance = 1). Our HCC cohorts further revealed that high HHLA2 expression was an independent prognostic biomarker of shorter overall survival (P<0.01) and time to recurrence (P<0.001) for HCC patients. Bioinformatics experiments revealed that HHLA2 may accelerate the cell cycle of cancer cells. Additionally, we found that high expression of HHLA2 was associated with immune infiltrates, including some immunosuppressive cells, cytokines, chemokines, and corresponding receptors, resulting in an immunosuppressive environment. Notably, HHLA2 expression was positively correlated with the infiltration of exhausted CD8+ T cells, which was validated by immunofluorescence. Genomic alteration analyses revealed that promoter hypermethylation of HHLA2 may be associated with its low expression. More importantly, patients with high HHLA2 expression may be more sensitive to chemotherapy and have better responses to immunotherapy. Conclusions: High expression of HHLA2 is an independent prognostic biomarker for HCC patients. It can activate the cell cycle and foster an immunosuppressive tumor microenvironment by enriching exhausted CD8+ T cells. Promoter hypermethylation might lead to low expression of HHLA2 in HCC. Thus, targeting HHLA2 may be a practical therapeutic strategy for HCC patients in the future.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Humanos , Inmunoglobulinas/genética , Neoplasias Hepáticas/patología , Pronóstico , Microambiente Tumoral
4.
Clin Transl Med ; 12(4): e794, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35384345

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a prevalent malignancy with poor prognosis. As a cell adhesion molecule, poliovirus receptor (PVR/CD155) is abnormally overexpressed in tumour cells, and related to tumour proliferation and invasion. However, the potential role and mechanism of CD155 have not yet been elucidated in HCC. METHODS: Immunohistochemistry, RT-PCR and Western blot assays were used to determine CD155 expression in HCC cell lines and tissues. Cell Counting Kit-8 and colony formation assays were used to examine cell proliferation. Transwell and wound healing assays were used to evaluate cell migration and invasion. Cell apoptosis and cycle distribution were assessed by flow cytometry. Cox regression and Kaplan-Meier analyses were performed to explore the clinical significance of CD155. The role of CD155 in vivo was evaluated by establishing liver orthotropic xenograft mice model. RNA sequencing, bioinformatics analysis and co-immunoprecipitation assay were used to explore the downstream signalling pathway of CD155. RESULTS: CD155 was upregulated in HCC tissues and represented a promising prognostic indicator for HCC patients (n = 189) undergoing curative resection. High CD155 expression enhanced cell proliferation, migration and invasion, and contributed to cell survival in HCC. CD155 overexpression also induced epithelial-mesenchymal transition in HCC cells. CD155 function in HCC involved SRC/p38 MAPK signalling pathway. CD155 interacted with SRC homology-2 domain of SRC and promoted SRC activation, further inhibiting the downstream p38 MAPK signalling pathway in HCC. CONCLUSIONS: CD155 promotes HCC progression via the SRC/p38 MAPK signalling pathway. CD155 may represent a predictor for poor postsurgery prognosis in HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sistema de Señalización de MAP Quinasas , Receptores Virales , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Pronóstico , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
Front Oncol ; 11: 666549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195076

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a recalcitrant cancer. The Chinese herbal monomer fangchinoline (FCL) has been reported to have anti-tumor activity in several human cancer cell types. However, the therapeutic efficacy and underlying mechanism on ESCC remain to be elucidated. In the present study, for the first time, we demonstrated that FCL significantly suppressed the growth of ESCC both in vitro and in vivo. Mechanistic studies revealed that FCL-induced G1 phase cell-cycle arrest in ESCC which is dependent on p21 and p27. Moreover, we found that FCL coordinatively triggered Noxa-dependent intrinsic apoptosis and DR5-dependent extrinsic apoptosis by transactivating ATF4, which is a novel mechanism. Our findings elucidated the tumor-suppressive efficacy and mechanisms of FCL and demonstrated FCL is a potential anti-ESCC agent.

6.
Cancer Biol Med ; 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33733647

RESUMEN

OBJECTIVE: The hyperactivated neddylation pathway plays an important role in tumorigenesis and is emerging as a promising anticancer target. We aimed to study whether NEDD8 (neural precursor cell expressed, developmentally down-regulated 8) might serve as a therapeutic target in esophageal squamous cell carcinoma (ESCC). METHODS: The clinical relevance of NEDD8 expression was evaluated by using The Cancer Genome Atlas (TCGA) database and tissue arrays. NEDD8-knockdown ESCC cells generated with the CRISPR/Cas9 system were used to explore the anticancer effects and mechanisms. Quantitative proteomic analysis was used to examine the variations in NEDD8 knockdown-induced biological pathways. The cell cycle and apoptosis were assessed with fluorescence activated cell sorting. A subcutaneous-transplantation mouse tumor model was established to investigate the anticancer potential of NEDD8 silencing in vivo. RESULTS: NEDD8 was upregulated at both the mRNA and protein expression levels in ESCC, and NEDD8 overexpression was associated with poorer overall patient survival (mRNA level: P = 0.028, protein level: P = 0.026, log-rank test). Downregulation of NEDD8 significantly suppressed tumor growth both in vitro and in vivo. Quantitative proteomic analysis revealed that downregulation of NEDD8 induced cell cycle arrest, DNA damage, and apoptosis in ESCC cells. Mechanistic studies demonstrated that NEDD8 knockdown led to the accumulation of cullin-RING E3 ubiquitin ligases (CRLs) substrates through inactivation of CRLs, thus suppressing the malignant phenotype by inducing cell cycle arrest and apoptosis in ESCC. Rescue experiments demonstrated that the induction of apoptosis after NEDD8 silencing was attenuated by DR5 knockdown. CONCLUSIONS: Our study elucidated the anti-ESCC effects and underlying mechanisms of NEDD8 knockdown, and validated NEDD8 as a potential target for ESCC therapy.

7.
Front Cell Dev Biol ; 9: 617134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33553178

RESUMEN

Rho family GTPase RhoB is the critical signaling component controlling the inflammatory response elicited by pro-inflammatory cytokines. However, the underlying mechanisms of RhoB degradation in inflammatory response remain unclear. In this study, for the first time, we identified that TNFAIP1, an adaptor protein of Cullin3 E3 ubiquitin ligases, coordinated with Cullin3 to mediate RhoB degradation through ubiquitin proteasome system. In addition, we demonstrated that downregulation of TNFAIP1 induced the expression of pro-inflammatory cytokines IL-6 and IL-8 in TNFα-stimulated hepatocellular carcinoma cells through the activation of p38/JNK MAPK pathway via blocking RhoB degradation. Our findings revealed a novel mechanism of RhoB degradation and provided a potential strategy for anti-inflammatory intervention of tumors by targeting TNFAIP1-RhoB axis.

9.
Int J Biol Sci ; 15(4): 882-894, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906218

RESUMEN

Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been defined as a distinct leukemia entity in the 2016 updated WHO classification of myeloid neoplasm. Our previous report showed that autophagic activity was elevated in NPM1-mutated AML, but the underlying molecular mechanisms remain elusive. Mount of study provides evidence that glycometabolic enzymes are implicated in the autophagic process. Pyruvate kinase isoenzyme M2 (PKM2), a key glycolytic enzyme, has been recently reported as a tumor supporter in leukemia. However, little is known about the roles of PKM2 in autophagic activity in NPM1-mutated AML. In this study, PKM2 highly expressed in NPM1-mutated AML, and partially, high levels of PKM2 were upregulated by PTBP1. Further experiments demonstrated that PKM2 mediated autophagic activation and increased the phosphorylation of key autophagy protein Beclin-1. Importantly, functional experiments demonstrated that PKM2 contributed to cell survival via autophagic activation. Ultimately, high PKM2 expression was associated with short overall and event-free survival time in NPM1-mutated AML patients. Our findings indicate for the first time that glycolytic enzyme PKM2 mediates autophagic activation and further contributes to cell survival in NPM1-mutated AML, suggesting that PKM2 may serve as a promising target for treatment of NPM1-mutated AML.


Asunto(s)
Autofagia/fisiología , Supervivencia Celular/fisiología , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/metabolismo , Adulto , Autofagia/genética , Proteínas Portadoras , Línea Celular Tumoral , Supervivencia Celular/genética , Femenino , Citometría de Flujo , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Proteínas de la Membrana , Persona de Mediana Edad , Mutación/genética , Proteínas Nucleares/genética , Nucleofosmina , Fosforilación/genética , Fosforilación/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Hormonas Tiroideas , Proteínas de Unión a Hormona Tiroide
10.
J Exp Clin Cancer Res ; 37(1): 8, 2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343273

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been recognized as a distinct leukemia entity in the 2016 World Health Organization (WHO) classification. The genetic events underlying oncogenesis in NPM1-mutated AML that is characterized by a normal karyotype remain unclear. Inositol polyphosphate 4-phosphatase type II (INPP4B), a new factor in the phosphoinositide-3 kinase (PI3K) pathway-associated cancers, has been recently found a clinically relevant role in AML. However, little is known about the specific mechanistic function of INPP4B in NPM1-mutated AML. METHODS: The INPP4B expression levels in NPM1-mutated AML primary blasts and AML OCI-AML3 cell lines were determined by qRT-PCR and western blotting. The effect of INPP4B knockdown on OCI-AML3 leukemia cell proliferation was evaluated, using the Cell Counting Kit-8 and colony formation assay. After INPP4B overexpression or knockdown, the activation of serum and glucocorticoid-regulated kinase 3 (SGK3) and AKT was assessed. The effects of PI3K signaling pathway inhibitors on the levels of p-SGK3 in OCI-AML3 cells were tested. The mass of PI (3,4) P2 and PI (3) P was analyzed by ELISA upon INPP4B overexpression. Knockdown of SGK3 by RNA interference and a rescue assay were performed to confirm the critical role of SGK3 in INPP4B-mediated cell survival. In addition, the molecular mechanism underlying INPP4B expression in NPM1-mutated leukemia cells was explored. Finally, Kaplan-Meier survival analysis was conducted on the NPM1-mutated AML cohort stratified into quartiles for INPP4B expression in The Cancer Genome Atlas (TCGA) dataset. RESULTS: High expression of INPP4B was observed in NPM1-mutated AML. Knockdown of INPP4B repressed cell proliferation in OCI-AML3 cells, whereas recovered INPP4B rescued this inhibitory effect in vitro. Mechanically, INPP4B enhanced phosphorylated SGK3 (p-SGK3) status, but did not affect AKT activation. SGK3 was required for INPP4B-induced cell proliferation in OCI-AML3 cells. High levels of INPP4B were at least partially caused by the NPM1 mutant via ERK/Ets-1 signaling. Finally, high expression of INPP4B showed a trend towards lower overall survival and event-free survival in NPM1-mutated AML patients. CONCLUSIONS: Our results indicate that INPP4B promotes leukemia cell survival via SGK3 activation, and INPP4B might be a potential target in the treatment of NPM1-mutated AML.


Asunto(s)
Leucemia/genética , Leucemia/metabolismo , Mutación , Proteínas Nucleares/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Leucemia/diagnóstico , Leucemia/mortalidad , Masculino , Persona de Mediana Edad , Modelos Biológicos , Nucleofosmina , Pronóstico , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Adulto Joven
11.
Theranostics ; 7(8): 2289-2304, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740552

RESUMEN

Accumulating evidence has defined nucleophosmin 1 (NPM1) mutation as a driver genetic event in acute myeloid leukemia (AML), whereas the pathogenesis of NPM1-mutated AML remains to be fully elucidated. In this study, we showed that mutant NPM1 elevated autophagic activity and autophagic activation contributed to leukemic cell survival in vitro. Meanwhile, we also found high expression of promyelocytic leukemia gene (PML) and its cytoplasmic dislocation in primary NPM1-mutated AML blasts and NPM1-mA positive OCI-AML3 cells. Mechanically, mutant NPM1 interacted with PML and mediated it delocalization as well as stabilization. Notably, NPM1-mA knockdown impaired autophagic activity, while induced expression of PML reversed this effect. Finally, we confirmed that PML modulated autophagic activity via AKT signal. These findings suggest that aberrant PML expression and autophagy are beneficial to the leukemic transformation driven by NPM1 mutations. This indicates an attractive therapeutic avenue for PML targeting and/or autophagy inhibition in the treatment of NPM1-mutated AML.


Asunto(s)
Autofagia , Leucemia Mieloide Aguda/fisiopatología , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo , Adulto , Anciano , Supervivencia Celular , Transformación Celular Neoplásica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/genética , Nucleofosmina , Estabilidad Proteica
12.
J Cancer ; 7(15): 2270-2279, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27994664

RESUMEN

Nucleophosmin (NPM1) - a gene that encodes for a nuclear protein with multiple functions. Mutations in NPM1 are seen in approximately one-third of acute myeloid leukemia (AML) and are generally associated with good response to induction chemotherapy. However, the mechanisms underlying this chemosensitivity are still unknown. Recent studies have established that nuclear factor-κB (NF-κB) activation is a key response of leukemia cell to chemotherapy. In this study, we transfected human monocytic leukemia THP-1 cells with the vector expressing NPM1 mutation variant (NPM1mA), and confirmed overexpression of NPM1mA at mRNA and protein levels by reverse transcription PCR (RT-PCR) and immunohistochemistry, respectively. The effects of NPM1 mutations on chemotherapeutical agents induced apoptosis, NF-κB activity and gene expression were examined using flow cytometry, luciferase reporter assays, quantitative real time PCR (qRT-PCR) and Western blot. We found that overexpression of NPM1mA in THP-1 cells sensitized these cells to apoptosis induced by chemotherapeutical agents such as daunorubicin (DNR) and cytarabine (Ara-C). Moreover, we demonstrated that expression of NPM1 mA reduced the NF-κB transcription activity of THP-1 cells upon drug treatment. In addition, restoration of NF-κB activity via TNF-α stimulation could attenuate the effect of NPM1mA overexpression on DNR-and Ara-C-induced apoptosis. Interestingly, expression of NPM1mA could upregulate Bax and downregulate Bcl-2 at mRNA and protein levels in THP-1 cells when treated with DNR or Ara-C. We also demonstrated that restoration of NF-κB activity via TNF-α pre-treatment reversed the effect of NPM1mA on the Bax/Bcl-2 expression. Furthermore, evaluation of gene expression data from The Cancer Genome Atlas (TCGA) dataset revealed that NPM1-mutated patients showed a higher expression of Bax and a lower expression of Bcl-2. These results suggest that the NPM1 gene mutations could confer increased sensitivity to chemotherapeutic agents, at least in part, by suppressing NF-κB activity and regulating Bax/Bcl-2 expression.

13.
Oncotarget ; 7(44): 71477-71490, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27669739

RESUMEN

Mutations in the nucleophosmin 1 (NPM1) gene are the most frequent genetic alteration in acute myeloid leukemia (AML). Here, we showed that enforced expression of NPM1 mutation type A (NPM1-mA) inhibits myeloid differentiation of leukemia cells, whereas knockdown of NPM1-mA has the opposite effect. Our analyses of normal karyotype AML samples from The Cancer Genome Atlas (TCGA) dataset revealed that miR-10b is commonly overexpressed in NPM1-mutated AMLs. We also found high expression of miR-10b in primary NPM1-mutated AML blasts and NPM1-mA positive OCI-AML3 cells. In addition, NPM1-mA knockdown enhanced myeloid differentiation, while induced expression of miR-10b reversed this effect. Finally, we showed that KLF4 is downregulated in NPM1-mutated AMLs. These results demonstrated that miR-10b exerts its effects by repressing the translation of KLF4 and that NPM1-mA inhibits myeloid differentiation through the miR-10b/KLF4 axis. This sheds new light on the effect of NPM1 mutations' on leukemogenesis.


Asunto(s)
Leucemia Mieloide Aguda/patología , MicroARNs/fisiología , Mutación , Proteínas Nucleares/genética , Adulto , Anciano , Diferenciación Celular , Femenino , Células HL-60 , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Leucemia Mieloide Aguda/genética , Masculino , Persona de Mediana Edad , Nucleofosmina , Acetato de Tetradecanoilforbol/farmacología
14.
Int J Biol Sci ; 12(2): 144-55, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26884713

RESUMEN

Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been defined as a unique subgroup in the new classification of myeloid neoplasm, and the AML patients with mutated NPM1 frequently present extramedullary infiltration, but how NPM1 mutants regulate this process remains elusive. In this study, we found that overexpression of type A NPM1 gene mutation (NPM1-mA) enhanced the adhesive, migratory and invasive potential in THP-1 AML cells lacking mutated NPM1. NPM1-mA had up-regulated expression and gelatinolytic matrix metalloprotease-2 (MMP-2)/MMP-9 activity, as assessed by real-time PCR, western blotting and gelatin zymography. Following immunoprecipitation analysis to identify the interaction of NPM1-mA with K-Ras, we focused on the effect of NPM1-mA overexpression on the Ras/Mitogen-activated protein kinase (MAPK) signaling axis and showed that NPM1-mA increased the MEK and ERK phosphorylation levels, as evaluated by western blotting. Notably, a specific inhibitor of the ERK/MAPK pathway (PD98059), but not p38/MAPK, JNK/MAPK or PI3-K/AKT inhibitors, markedly decreased the cell invasion numbers in a transwell assay. Further experiments demonstrated that blocking the ERK/MAPK pathway by PD98059 resulted in reduced MMP-2/9 protein levels and MMP-9 activity. Additionally, NPM1-mA overexpression had down-regulated gene expression and protein production of tissue inhibitor of MMP-2 (TIMP-2) in THP-1 cells. Furthermore, evaluation of gene expression data from The Cancer Genome Atlas (TCGA) dataset revealed that MMP-2 was overexpressed in AML patient samples with NPM1 mutated and high MMP-2 expression associated with leukemic skin infiltration. Taken together, our results reveal that NPM1 mutations contribute to the invasive potential of AML cells through MMPs up-regulation via Ras/ERK MAPK signaling pathway activation and offer novel insights into the potential role of NPM1 mutations in leukemogenesis.


Asunto(s)
Leucemia Mieloide Aguda/genética , Sistema de Señalización de MAP Quinasas , Proteínas Nucleares/fisiología , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/patología , Invasividad Neoplásica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina
15.
Int J Med Sci ; 12(1): 17-22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25552914

RESUMEN

OBJECTIVE: The aim of this study was to quantify the copies of circulating nucleophosmin (NPM) mutations DNA in the plasma of patients with acute myeloid leukemia (AML) and to explore the association of circulating NPM mutation levels with clinical characteristics. DESIGN AND METHODS: The presence of NPM mutations in 100 Chinese patients newly diagnosed with AML were identified by RT-PCR and sequencing analysis. Copies of circulating NPM mutation A (NPM mut.A) DNA in the plasma of mutation-positive cases were quantified by real-time quantitative PCR (qRT-PCR). Furthermore, the association of circulating NPM mutation levels and clinical characteristics was analyzed. RESULTS: NPM mutations were identified in 37 of the 100 patients and all cases were NPM mut.A. The circulating NPM mut.A levels ranged from 0.35×10(8) copies/ml to 6.0×10(8) copies/ml in the 37 mutation-positive cases. The medium and quartile M (P25, P75) of the circulating NPM mut.A levels in patients classified as M2, M4 and M5 morphological subtypes were 1.35×10(8) (0.76×10(8), 1.91×10(8)) copies/ml, 1.81×10(8) (1.47×10(8), 2.2×10(8)) copies/ml and 2.50×10(8) (2.42×10(8), 3.05×10(8)) copies/ml, respectively. Circulating NPM mut.A levels were significantly higher in patients with the M5 subtype of AML compared to patients with the M2 and M4 subtypes (p=0.000, p=0.046). In addition, circulating NPM mut.A copies were significantly associated with a higher white blood cell count, platelet count and bone marrow blast percentage (p<0.05). CONCLUSION: Our results suggest that circulating NPM mutations DNA assay serves as a complementary to the routine investigative protocol of NPM-mutated leukemia.


Asunto(s)
Leucemia Mieloide Aguda/genética , Mutación , Proteínas Nucleares/genética , Adolescente , Adulto , ADN/sangre , Análisis Mutacional de ADN/métodos , Femenino , Humanos , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/patología , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Proteínas Nucleares/sangre , Nucleofosmina , Recuento de Plaquetas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adulto Joven
16.
Exp Cell Res ; 320(1): 119-27, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24076374

RESUMEN

The RNA-binding protein Musashi2 (Msi2) has been identified as a master regulator within a variety of stem cell populations via the regulation of translational gene expression. A recent study has suggested that Msi2 is strongly expressed in leukemic cells of acute myeloid leukemia patients, and elevated Msi2 is associated with poor prognosis. However, the potential role of Msi2 in leukemogenesis is still not well understood. Here, we investigated the effect of Msi2 knockdown on the biological properties of leukemic cells. High expression of Msi2 was found in K562 and KG-1a leukemic cell lines, and low expression was observed in the U937 cell line. We transduced K562 cells with two independent adenoviral shRNA vectors targeting Msi2 and confirmed knockdown of Msi2 at the mRNA and protein levels. Msi2 silencing inhibited cell growth and caused cell cycle arrest by increasing the expression of p21 and decreasing the expression of cyclin D1 and cdk2. In addition, knockdown of Msi2 promoted cellular apoptosis via the upregulation of Bax and downregulation of Bcl-2 expression. Furthermore, Msi2 knockdown resulted in the inactivation of the ERK/MAPK and p38/MAPK pathways, but no remarkable change in p-AKT was observed. These data provide evidence that Msi2 plays an important role in leukemogenesis involving the MAPK signaling pathway, which indicates that Msi2 may be a novel target for leukemia treatment.


Asunto(s)
Apoptosis , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proliferación Celular , Células Cultivadas , Células HEK293 , Células HL-60 , Humanos , Células K562 , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...