Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 12(19): 4666-4672, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647183

RESUMEN

The formation of transient structures plays important roles in biological processes, capturing temporary states of matter through influx of energy or biological reaction networks catalyzed by enzymes. These natural transient structures inspire efforts to mimic this elegant mechanism of structural control in synthetic analogues. Specifically, though traditional supramolecular materials are designed on the basis of equilibrium formation, recent efforts have explored out-of-equilibrium control of these materials using both direct and indirect mechanisms; the preponderance of such works has been in the area of low molecular weight gelators. Here, a transient supramolecular hydrogel is realized through cucurbit[7]uril host-guest physical crosslinking under indirect control from a biocatalyzed network that regulates and oscillates pH. The duration of transient hydrogel formation, and resulting mechanical properties, are tunable according to the dose of enzyme, substrate, or pH stimulus. This tunability enables control over emergent functions, such as the programmable burst release of encapsulated model macromolecular payloads.


Asunto(s)
Hidrocarburos Aromáticos con Puentes , Hidrogeles , Imidazoles , Hidrogeles/química , Hidrogeles/síntesis química , Concentración de Iones de Hidrógeno , Imidazoles/química , Hidrocarburos Aromáticos con Puentes/química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/síntesis química , Biocatálisis , Estructura Molecular , Muramidasa/química , Muramidasa/metabolismo
2.
Macromol Biosci ; 24(1): e2300001, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36786665

RESUMEN

In an effort to augment the function of supramolecular biomaterials, recent efforts have explored the creation of hybrid materials that couple supramolecular and covalent components. Here, the benzenetricarboxamide (BTA) supramolecular polymer motif is modified to present a phenylboronic acid (PBA) in order to promote the crosslinking of 1D BTA stacks by PBA-diol dynamic-covalent bonds through the addition of a multi-arm diol-bearing crosslinker. Interestingly, the combination of these two motifs serves to frustrate the resulting assembly process, yielding hydrogels with worse mechanical properties than those prepared without the multi-arm diol crosslinker. Both systems with and without the crosslinker do, however, respond to the presence of a physiological level of glucose with a reduction in their mechanical integrity; repulsive electrostatic interactions in the BTA stacks occur in both cases upon glucose binding, with added competition from glucose with PBA-diol bonds amplifying glucose response in the hybrid material. Accordingly, the present results point to an unexpected outcome of reduced hydrogel mechanics, yet increased glucose response, when two disparate dynamic motifs of BTA supramolecular polymerization and PBA-diol crosslinking are combined, offering a vision for future preparation of glucose-responsive supramolecular biomaterials.


Asunto(s)
Ácidos Borónicos , Glucosa , Ácidos Borónicos/química , Hidrogeles/química , Materiales Biocompatibles
3.
Adv Mater ; 36(5): e2308965, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994248

RESUMEN

The management of diabetes in a manner offering autonomous insulin therapy responsive to glucose-directed need, and moreover with a dosing schedule amenable to facile administration, remains an ongoing goal to improve the standard of care. While basal insulins with reduced dosing frequency, even once-weekly administration, are on the horizon, there is still no approved therapy that offers glucose-responsive insulin function. Herein, a nanoscale complex combining both electrostatic- and dynamic-covalent interactions between a synthetic dendrimer carrier and an insulin analogue modified with a high-affinity glucose-binding motif yields an injectable insulin depot affording both glucose-directed and long-lasting insulin availability. Following a single injection, it is even possible to control blood glucose for at least one week in diabetic swine subjected to daily oral glucose challenges. Measurements of serum insulin concentration in response to challenge show increases in insulin corresponding to elevated blood glucose levels, an uncommon finding even in preclinical work on glucose-responsive insulin. Accordingly, the subcutaneous nanocomplex that results from combining electrostatic- and dynamic-covalent interactions between a modified insulin and a synthetic dendrimer carrier affords a glucose-responsive insulin depot for week-long control following a single routine injection.


Asunto(s)
Dendrímeros , Diabetes Mellitus , Porcinos , Animales , Ratones , Insulina , Glucosa , Glucemia
4.
Adv Mater ; 36(16): e2311498, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38095904

RESUMEN

Peptide self-assembly is a powerful tool to prepare functional materials at the nanoscale. Often, the resulting materials have high aspect-ratio, with intermolecular ß-sheet formation underlying 1D fibrillar structures. Inspired by dynamic structures in nature, peptide self-assembly is increasingly moving toward stimuli-responsive designs wherein assembled structures are formed, altered, or dissipated in response to a specific cue. Here, a peptide bearing a prosthetic glucose-binding phenylboronic acid (PBA) is demonstrated to self-assemble into an uncommon nanocoil morphology. These nanocoils arise from antiparallel ß-sheets, with molecules aligned parallel to the long axis of the coil. The binding of glucose to the PBA motif stabilizes and elongates the nanocoil, driving entanglement and gelation at physiological glucose levels. The glucose-dependent gelation of these materials is then explored for the encapsulation and release of a therapeutic agent, glucagon, that corrects low blood glucose levels. Accordingly, the release of glucagon from the nanocoil hydrogels is inversely related to glucose level. When evaluated in a mouse model of severe acute hypoglycemia, glucagon delivered from glucose-stabilized nanocoil hydrogels demonstrates increased protection compared to delivery of the agent alone or within a control nanocoil hydrogel that is not stabilized by glucose.


Asunto(s)
Ácidos Borónicos , Glucagón , Glucosa , Animales , Ratones , Glucosa/metabolismo , Hidrogeles/química , Péptidos/química
5.
ACS Biomater Sci Eng ; 8(11): 4873-4885, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36317822

RESUMEN

Stimuli-responsive hydrogels are an area of active discovery for approaches to deliver therapeutics in response to disease-specific indicators. Glucose-responsive delivery of insulin is of particular interest in better managing diabetes. Accordingly, hydrogels have been explored as platforms that enable both a rate and dose of insulin release aligning with the real-time physiological disease state; materials often include glucose sensing by dynamic-covalent cross-linking between phenylboronic acids (PBAs) and diols, with competition from ambient glucose reducing cross-link density of the material and accelerating release of encapsulated insulin. Yet, these materials historically have challenges with insulin leakage, offer limited glucose-responsive release of the insulin payload, and require unreasonably high injection pressures for syringe administration. Here, a thermogel platform prepared from temperature-induced micelles formed into a network by PBA-Diol cross-linking is optimized using a formulation-centered approach to maximize glucose-responsive insulin delivery. Importantly, the dual-responsive nature of this platform enables a low-viscosity sol at ambient temperature for facile injection, solidifying into a stable viscoelastic hydrogel network once in the body. The final optimized formulation affords acceleration in insulin release in response to glucose and enables single dose blood glucose control in diabetic rodents when subjected to multiple glucose challenges.


Asunto(s)
Micelas , Poloxámero , Glucosa , Hidrogeles , Insulina/farmacología
6.
Biomacromolecules ; 23(10): 4401-4411, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173091

RESUMEN

The ongoing rise in diabetes incidence necessitates improved therapeutic strategies to enable precise blood glucose control with convenient device form factors. Microneedle patches are one such device platform capable of achieving therapeutic delivery through the skin. In recent years, polymeric microneedle arrays have been reported using methods of in situ polymerization and covalent crosslinking in microneedle molds. In spite of promising results, in situ polymerization carries a risk of exposure to toxic unreacted precursors remaining in the device. Here, a polymeric microneedle patch is demonstrated that uses dynamic-covalent phenylboronic acid (PBA)-diol bonds in a dual role affording both network crosslinking and glucose sensing. By this approach, a pre-synthesized and purified polymer bearing pendant PBA motifs is combined with a multivalent diol crosslinker to prepare dynamic-covalent hydrogel networks. The ability of these dynamic hydrogels to shear-thin and self-heal enables their loading to a microneedle mold by centrifugation. Subsequent drying then yields a patch of uniformly shaped microneedles with the requisite mechanical properties to penetrate skin. Insulin release from these materials is accelerated in the presence of glucose. Moreover, short-term blood glucose control in a diabetic rat model following application of the device to the skin confirms insulin activity and bioavailability. Accordingly, dynamic-covalent crosslinking facilitates a route for fabricating microneedle arrays circumventing the toxicity concerns of in situ polymerization, offering a convenient device form factor for therapeutic insulin delivery.


Asunto(s)
Diabetes Mellitus , Insulina , Administración Cutánea , Animales , Sistemas de Liberación de Medicamentos/métodos , Glucosa , Hidrogeles , Insulina/química , Agujas , Polímeros/química , Ratas
7.
Proc Natl Acad Sci U S A ; 119(33): e2207829119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943988

RESUMEN

Although patients generally prefer oral drug delivery to injections, low permeability of the gastrointestinal tract makes this method impossible for most biomacromolecules. One potential solution is codelivery of macromolecules, including therapeutic proteins or nucleic acids, with intestinal permeation enhancers; however, enhancer use has been limited clinically by modest efficacy and toxicity concerns surrounding long-term administration. Here, we hypothesized that plant-based foods, which are well tolerated by the gastrointestinal tract, may contain compounds that enable oral macromolecular absorption without causing adverse effects. Upon testing more than 100 fruits, vegetables, and herbs, we identified strawberry and its red pigment, pelargonidin, as potent, well-tolerated enhancers of intestinal permeability. In mice, an oral capsule formulation comprising pelargonidin and a 1 U/kg dose of insulin reduced blood glucose levels for over 4 h, with bioactivity exceeding 100% relative to subcutaneous injection. Effects were reversible within 2 h and associated with actin and tight junction rearrangement. Furthermore, daily dosing of mice with pelargonidin for 1 mo resulted in no detectable side effects, including weight loss, tissue damage, or inflammatory responses. These data suggest that pelargonidin is an exceptionally effective enhancer of oral protein uptake that may be safe for routine pharmaceutical use.


Asunto(s)
Antocianinas , Fragaria , Absorción Intestinal , Intestinos , Proteínas , Administración Oral , Animales , Antocianinas/química , Antocianinas/farmacología , Fragaria/química , Insulina/administración & dosificación , Insulina/farmacocinética , Absorción Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Ratones , Permeabilidad , Proteínas/administración & dosificación , Proteínas/farmacocinética
8.
J Control Release ; 348: 601-611, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35714732

RESUMEN

Dynamic-covalent motifs are increasingly used for hydrogel crosslinking, leveraging equilibrium-governed reversible bonds to prepare viscoelastic materials with dynamic properties and self-healing character. The bonding between aryl boronates and diols is one dynamic-covalent chemistry of interest. The extent of network crosslinking using this motif may be subject to competition from ambient diols such as glucose; this approach has long been explored for glucose-directed release of insulin to control diabetes. However, the majority of such work has used phenylboronic acids (PBAs) that suffer from low-affinity glucose binding, limiting material responsiveness. Moreover, many PBA chemistries also bind with higher affinity to certain non-glucose analytes like fructose and lactate than they do to glucose, limiting their specificity of sensing and therapeutic deployment. Here, dynamic-covalent hydrogels are prepared that, for the first time, use a new diboronate motif with enhanced glucose binding-and importantly improved glucose specificity-leveraging the ability of rigid diboronates to simultaneously bind two sites on a single glucose molecule. Compared to long-used PBA-based approaches, diboronate hydrogels offer more glucose-responsive insulin release that is minimally impacted by non-glucose analytes. Improved responsiveness translates to more rapid blood glucose correction in a rodent diabetes model. Accordingly, this new dynamic-covalent crosslinking chemistry is useful in realizing more sensitive and specific glucose-responsive materials.


Asunto(s)
Glucosa , Hidrogeles , Glucosa/química , Hidrogeles/química , Insulina/química
9.
J Am Chem Soc ; 143(32): 12578-12589, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34280305

RESUMEN

Nature achieves remarkable function from the formation of transient, nonequilibrium materials realized through continuous energy input. The role of enzymes in catalyzing chemical transformations to drive such processes, often as part of stimuli-directed signaling, governs both material formation and lifetime. Inspired by the intricate nonequilibrium nanostructures of the living world, this work seeks to create transient materials in the presence of a consumable glucose stimulus under enzymatic control of glucose oxidase. Compared to traditional glucose-responsive materials, which typically engineer degradation to release insulin under high-glucose conditions, the transient nanofibrillar hydrogel materials here are stabilized in the presence of glucose but destabilized under conditions of limited glucose to release encapsulated glucagon. In the context of blood glucose control, glucagon offers a key antagonist to insulin in responding to hypoglycemia by signaling the release of glucose stored in tissues so as to restore normal blood glucose levels. Accordingly, these materials are evaluated in a prophylactic capacity in diabetic mice to release glucagon in response to a sudden drop in blood glucose brought on by an insulin overdose. Delivery of glucagon using glucose-fueled nanofibrillar hydrogels succeeds in limiting the onset and severity of hypoglycemia in mice. This general strategy points to a new paradigm in glucose-responsive materials, leveraging glucose as a stabilizing cue for responsive glucagon delivery in combating hypoglycemia. Moreover, compared to most fundamental reports achieving nonequilibrium and/or fueled classes of materials, the present work offers a rare functional example using a disease-relevant fuel to drive deployment of a therapeutic.


Asunto(s)
Glucagón/metabolismo , Glucosa Oxidasa/metabolismo , Glucosa/metabolismo , Péptidos/metabolismo , Glucagón/química , Glucosa/química , Glucosa Oxidasa/química , Concentración de Iones de Hidrógeno , Conformación Molecular , Péptidos/química
10.
J Mater Chem B ; 8(40): 9197-9211, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32924052

RESUMEN

Hydrogels comprise a class of soft materials which are extremely useful in a number of contexts, for example as matrix-mimetic biomaterials for applications in regenerative medicine and drug delivery. One particular subclass of hydrogels consists of materials prepared through non-covalent physical crosslinking afforded by supramolecular recognition motifs. The dynamic, reversible, and equilibrium-governed features of these molecular-scale motifs often transcend length-scales to endow the resulting hydrogels with these same properties on the bulk scale. In efforts to engineer hydrogels of all types with more precise or application-specific uses, inclusion of stimuli-responsive sol-gel transformations has been broadly explored. In the context of biomedical uses, temperature is an interesting stimulus which has been the focus of numerous hydrogel designs, supramolecular or otherwise. Most supramolecular motifs are inherently temperature-sensitive, with elevated temperatures commonly disfavoring motif formation and/or accelerating its dissociation. In addition, supramolecular motifs have also been incorporated for physical crosslinking in conjunction with polymeric or macromeric building blocks which themselves exhibit temperature-responsive changes to their properties. Through molecular-scale engineering of supramolecular recognition, and selection of a particular motif or polymeric/macromeric backbone, it is thus possible to devise a number of supramolecular hydrogel materials to empower a variety of future biomedical applications.


Asunto(s)
Hidrogeles/química , Compuestos Macrocíclicos/química , Enlace de Hidrógeno , Péptidos/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA