Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3085, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600128

RESUMEN

Constructing an artificial solid electrolyte interphase (SEI) on lithium metal electrodes is a promising approach to address the rampant growth of dangerous lithium morphologies (dendritic and dead Li0) and low Coulombic efficiency that plague development of lithium metal batteries, but how Li+ transport behavior in the SEI is coupled with mechanical properties remains unknown. We demonstrate here a facile and scalable solution-processed approach to form a Li3N-rich SEI with a phase-pure crystalline structure that minimizes the diffusion energy barrier of Li+ across the SEI. Compared with a polycrystalline Li3N SEI obtained from conventional practice, the phase-pure/single crystalline Li3N-rich SEI constitutes an interphase of high mechanical strength and low Li+ diffusion barrier. We elucidate the correlation among Li+ transference number, diffusion behavior, concentration gradient, and the stability of the lithium metal electrode by integrating phase field simulations with experiments. We demonstrate improved reversibility and charge/discharge cycling behaviors for both symmetric cells and full lithium-metal batteries constructed with this Li3N-rich SEI. These studies may cast new insight into the design and engineering of an ideal artificial SEI for stable and high-performance lithium metal batteries.

2.
IEEE Sens J ; 23(11): 11404-11411, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38093905

RESUMEN

Due to their high sensitivity and selectivity, low cost, and good compatibility for sensor array integration, colorimetric gas sensors are widely used in hazardous gas detection, food freshness assessment, and gaseous biomarker identification. However, colorimetric gas sensors are usually designed for one-time discrete measurement because the sensing materials are entirely exposed to analytes during the sensing process. The fast consumption of sensing materials limits colorimetric sensors' applications in continuous analytes monitoring, increases the operation complexity and brings challenges for calibration. In this work, we reported a novel sensor design to prolong the lifetime of colorimetric gas sensors by engineering the gas diffusion process to preserve the sensing materials. We compared two geometries for gas diffusion control in a sensing matrix through simulation and experiment on an ammonia sensing platform. We found that the 2-dimensional gas diffusion geometry enabled a better sensor performance, including more stable and higher sensitivity and a more linear response to ammonia concentration compared to 1-dimensional gas diffusion geometry. We also demonstrated the usability of this diffusion-modulated colorimetric sensor for continuous environmental ammonia monitoring.

3.
Biosensors (Basel) ; 13(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37998139

RESUMEN

Wearable biosensors offer noninvasive, real-time, and continuous monitoring of diverse human health data, making them invaluable for remote patient tracking, early diagnosis, and personalized medicine [...].


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Humanos , Medicina de Precisión , Monitoreo Fisiológico
4.
ACS Appl Mater Interfaces ; 15(5): 6647-6656, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36696100

RESUMEN

Aqueous zinc metal batteries show great promise in large-scale energy storage. However, the decomposition of water molecules leads to severe side reactions, resulting in the limited lifespan of Zn batteries. Here, the tetrahydrofuran (THF) additive was introduced into the zinc sulfate (ZnSO4) electrolyte to reduce water activity by modulating the solvation structure of the Zn hydration layer. The THF molecule can play as a proton acceptor to form hydrogen bonds with water molecules, which can prevent water-induced undesired reactions. Thus, in an optimal 2 M ZnSO4/THF (5% by volume) electrolyte, the hydrogen evolution reaction and byproduct precipitation can be suppressed, which greatly improves the cycling stability and Coulombic efficiency of reversible Zn plating/stripping. The Zn symmetrical cells exhibit ultralong working cycles with a wide range of current density and capacity. The THF additive also enables a high Coulombic efficiency in the Zn||Cu cell with an average value of 99.59% over 400 cycles and a high reversible capacity with a capacity retention of 97.56% after 250 cycles in the Zn||MnO2 full cells. This work offers an effective strategy with high scalability and low cost for the protection of the Zn metal electrodes in aqueous rechargeable batteries.

5.
Biosensors (Basel) ; 14(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38248381

RESUMEN

Ketones are well-known biomarkers of fat oxidation produced in the liver as a result of lipolysis. These biomarkers include acetoacetic acid and ß-hydroxybutyric acid in the blood/urine and acetone in our breath and skin. Monitoring ketone production in the body is essential for people who use caloric intake deficit to reduce body weight or use ketogenic diets for wellness or therapeutic treatments. Current methods to monitor ketones include urine dipsticks, capillary blood monitors, and breath analyzers. However, these existing methods have certain disadvantages that preclude them from being used more widely. In this work, we introduce a novel acetone sensor device that can detect acetone levels in breath and overcome the drawbacks of existing sensing approaches. The critical element of the device is a robust sensor with the capability to measure acetone using a complementary metal oxide semiconductor (CMOS) chip and convenient data analysis from a red, green, and blue deconvolution imaging approach. The acetone sensor device demonstrated sensitivity of detection in the micromolar-concentration range, selectivity for detection of acetone in breath, and a lifetime stability of at least one month. The sensor device utility was probed with real tests on breath samples using an established blood ketone reference method.


Asunto(s)
Acetona , Líquidos Corporales , Humanos , Cetonas , Ácido 3-Hidroxibutírico , Biomarcadores
6.
ACS Sens ; 7(11): 3335-3342, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36269087

RESUMEN

A miniaturized and multiplexed chemical sensing technology is urgently needed to empower mobile devices and robots for various new applications such as mobile health and Internet of Things. Here, we show that a complementary metal-oxide-semiconductor (CMOS) imager can be turned into a multiplexed colorimetric sensing chip by coating micron-scale sensing spots on the CMOS imager surface. Each sensing spot contains nanocomposites of colorimetric sensing probes and silica nanoparticles that enhance sensing signals by several orders of magnitude. The sensitivity is spot-size-invariant, and high-performance gas sensing can be achieved on sensing spots as small as ∼10 µm. This great scalability combined with millions of pixels of a CMOS imager offers a promising platform for highly integrated chemical sensors. To prove its compatibility with mobile electronics, we have built a smartphone accessory based on this chemical CMOS sensor and demonstrated that personal health management can be achieved through the detection of gaseous biomarkers and pollutants. We anticipate that this new platform will pave the way for the widespread application of chemical sensing in mobile electronics and wearable devices.


Asunto(s)
Semiconductores , Dispositivos Electrónicos Vestibles , Óxidos , Colorimetría , Electrónica , Gases
7.
Biosens Bioelectron ; 195: 113650, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34560350

RESUMEN

Accurate assessment of dietary macronutrients intake is critical for the effective management of multiple diseases, such as obesity, diabetes, cardiovascular disease, metabolic disease, and cancer. Conventional self-reporting method is burdensome, inaccurate, and often biased. Though blood analysis and breath analysis can provide evidence-based information, they are either invasive or subject to human errors. Here we reported a wearable transdermal volatile biomarkers detection system based on novel colorimetric sensing technology for dietary macronutrients intake assessment. This technique quantifies the emission rates of transdermal volatile biomarkers via a gradient-based colorimetric array sensor (GCAS). The optical system of the GCAS device tracks the localized color development associated with the chemical reaction between the volatile biomarkers and the porous sensing probes, and determines the biomarkers emission rates through image processing algorithms. The localized chemical reaction and the image-based signal processing also make the GCAS capable for multiplexed detection of multiple analytes simultaneously. The GCAS sensor has been applied for transdermal acetone detection on 5 subjects in a keto diet intervention. The study indicates that the transdermal acetone increases after the subjects consuming keto diets and it decreases to basal level after intaking carb-rich diets. The transdermal acetone response from the GCAS sensor correlates well with breath acetone concentration in the range between 0 and 40 ppm and the correlation factor (R2) is as high as 0.8877. This method provides a noninvasive, low-cost, and wearable tool for assessing dietary macronutrients intake outside of lab or hospital settings. It could be widely applied in disease management, weight control, and nutrition management.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Acetona , Biomarcadores , Pruebas Respiratorias , Humanos
8.
IEEE Sens J ; 21(15): 17327-17334, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34744520

RESUMEN

Transcutaneous oxygen and carbon dioxide provide the status of pulmonary gas exchange and are of importance in diagnosis and management of respiratory diseases. Though significant progress has been made in oximetry, not much has been explored in developing wearable technologies for continuous monitoring of transcutaneous carbon dioxide. This research reports the development of a truly wearable sensor for continuous monitoring of transcutaneous carbon dioxide using miniaturized nondispersive infrared sensor augmented by hydrophobic membrane to address the humidity interference. The wearable transcutaneous CO2 monitor shows well-behaved response curve to humid CO2 with linear response to CO2 concentration. The profile of transcutaneous CO2 monitored by the wearable device correlates well with the end-tidal CO2 trend in human test. The feasibility of the wearable device for passive and unobstructed tracking of transcutaneous CO2 in free-living conditions has also been demonstrated in field test. The wearable transcutaneous CO2 monitoring technology developed in this research can be widely used in remote assessment of pulmonary gas exchange efficiency for patients with respiratory diseases, such as COVID-19, sleep apnea, and chronic obstructive pulmonary disease (COPD).

9.
Biosensors (Basel) ; 11(10)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34677306

RESUMEN

Bluetooth Low Energy (BLE) plays a critical role in wireless data transmission in wearable technologies. The previous work in this field has mostly focused on optimizing the transmission throughput and power consumption. However, not much work has been reported on a systematic evaluation of the data packet loss of BLE in the wearable healthcare ecosystem, which is essential for reliable and secure data transmission. Considering that diverse wearable devices are used as peripherals and off-the-shelf smartphones (Android, iPhone) or Raspberry Pi with various chipsets and operating systems (OS) as hubs in the wearable ecosystem, there is an urgent need to understand the factors that influence data loss in BLE and develop a mitigation solution to address the data loss issue. In this work, we have systematically evaluated packet losses in Android and iOS based wearable ecosystems and proposed a reduced transmission frequency and data bundling strategy along with queue-based packet transmission protocol to mitigate data packet loss in BLE. The proposed protocol provides flexibility to the peripheral device to work with the host either in real-time mode for timely data transmission or offline mode for accumulated data transmission when there is a request from the host. The test results show that lowered transmission frequency and data bundling reduce the packet losses to less than 1%. The queue-based packet transmission protocol eliminates any remaining packet loss by using re-request routines. The data loss mitigation protocol developed in this research can be widely applied to the BLE-based wearable ecosystem for various applications, such as body sensor networks (BSN), the Internet of Things (IoT), and smart homes.


Asunto(s)
Atención a la Salud , Tecnología Inalámbrica , Algoritmos , Ecosistema , Teléfono Inteligente , Programas Informáticos , Dispositivos Electrónicos Vestibles
10.
Sens Actuators B Chem ; 3452021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34326572

RESUMEN

Humidity interferes most gas sensors, especially colorimetric sensors. The conventional approaches to minimize the humidity interference in colorimetric gas sensing require using extra components, causing unwanted analytes loss, or limiting the choices of sensing probes to only hydrophobic ones. To explore the possibility of minimizing the humidity interference in a hydrophilic colorimetric sensing system, we have developed a hydrogel-incorporated approach to buffer the humidity influence on the colorimetric gas sensing. The hydrogel-incorporated colorimetric sensors show not only high humidity tolerance but also the improved analytical performance. The accuracy and reliability of the hydrogel-incorporated colorimetric sensors have also been validated in field tests. This hydrogel-incorporated approach will open up an avenue to implement hydrophilic recipes into colorimetric gas sensors and extend the application of colorimetric sensors to humid gases detection.

11.
Respir Med ; 181: 106381, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33819714

RESUMEN

The COVID-19 pandemic has caused huge impact on public health and significantly changed our lifestyle. This is due to the fast airborne oro-nasal transmission of SARS-CoV-2 from the infected individuals. The generation of liquid aerosolized particles occurs when the COVID-19 patients speak, sing, cough, sneeze, or simply breathe. We have developed a novel aerosol barrier mask (ABM) to mitigate the spread of SARS-CoV-2 and other infectious pathogens. This Aerosol Barrier Mask is designed for preventing SARS-CoV-2 transmission while transporting patients within hospital facilities. This mask can constrain aerosol and droplet particles and trap them in a biofilter, while the patient is normally breathing and administrated with medical oxygen. The system can be characterized as an oxygen delivery and mitigation mask which has no unfiltered exhaled air dispersion. The mask helps to prevent the spread of SARS-CoV-2, and potentially other infectious respiratory pathogens and protects everyone in general, especially healthcare professionals.


Asunto(s)
COVID-19/prevención & control , COVID-19/virología , Control de Enfermedades Transmisibles/métodos , Diseño de Equipo/métodos , Máscaras , SARS-CoV-2/patogenicidad , Aerosoles , COVID-19/transmisión , Personal de Salud , Humanos
12.
Res Sq ; 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33655242

RESUMEN

Contaminated aerosols and micro droplets are easily generated by infected hosts through sneezing, coughing, speaking and breathing1-3 and harm humans' health and the global economy. While most of the efforts are usually targeted towards protecting individuals from getting infected,4 eliminating transmissions from infection sources is also important to prevent disease transmission. Supportive therapies for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) pneumonia such as oxygen supplementation, nebulizers and non-invasive mechanical ventilation all carry an increased risk for viral transmission via aerosol to healthcare workers.5-9 In this work, we study the efficacy of five methods for self-containing aerosols emitted from infected subjects undergoing nebulization therapies with a diverse spectrum on oxygen delivery therapies. The work includes five study cases: Case I: Use of a Full-Face Mask with biofilter in bilevel positive airway pressure device (BPAP) therapy, Case II: Use of surgical mask in High Flow Nasal Cannula (HFNC) therapy, Case III: Use of a modified silicone disposable mask in a HFNC therapy, Case IV: Use of a modified silicone disposable mask with a regular nebulizer and normal breathing, Case V: Use of a mitigation box with biofilter in a Non-Invasive Positive Pressure Ventilator (NIPPV). We demonstrate that while cases I, III and IV showed efficacies of 98-100%; cases II and V, which are the most commonly used, resulted with significantly lower efficacies of 10-24% to mitigate the dispersion of nebulization aerosols. Therefore, implementing cases I, III and IV in health care facilities may help battle the contaminations and infections via aerosol transmission during a pandemic.

13.
medRxiv ; 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33594375

RESUMEN

The COVID-19 pandemic has caused huge impact on public health and significantly changed our lifestyle. This is due to the fast airborne oro-nasal transmission of SARS-CoV-2 from the infected individuals. The generation of liquid aerosolized particles occurs when the COVID-19 patients speak, sing, cough, sneeze, or simply breathe. We have developed a novel aerosol barrier mask (ABM) to mitigate the spread of SARS-CoV-2 and other infectious pathogens. This Aerosol Barrier Mask is designed for preventing SARS-CoV-2 transmission while transporting patients within hospital facilities. This mask can constrain aerosol and droplet particles and trap them in a biofilter, while the patient is normally breathing and administrated with medical oxygen. The system can be characterized as an oxygen delivery and mitigation mask which has no unfiltered exhaled air dispersion. The mask helps to prevent the spread of SARS-CoV-2, and potentially other infectious respiratory pathogens and protects everyone in general, especially healthcare professionals.

14.
ACS Sens ; 6(2): 303-320, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33085469

RESUMEN

Colorimetric sensing technologies have been widely used for both quantitative detection of specific analyte and recognition of a large set of analytes in gas phase, ranging from environmental chemicals to biomarkers in breath. However, the accuracy and reliability of the colorimetric gas sensors are threatened by the humidity interference in different application scenarios. Though substantial progress has been made toward new colorimetric sensors development, unless the humidity interference is well addressed, the colorimetric sensors cannot be deployed for real-world applications. Although there are comprehensive and insightful review articles about the colorimetric gas sensors, they have focused more on the progress in new sensing materials, new sensing systems, and new applications. There is a need for reviewing the works that have been done to solve the humidity issue, a challenge that the colorimetric gas sensors commonly face. In this review paper, we analyzed the mechanisms of the humidity interference and discussed the approaches that have been reported to mitigate the humidity interference in colorimetric sensing of environmental gases and breath biomarkers. Finally, the future perspectives of colorimetric sensing technologies are also discussed.


Asunto(s)
Colorimetría , Gases , Biomarcadores , Humedad , Reproducibilidad de los Resultados
15.
Biosens Bioelectron ; 169: 112590, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32927349

RESUMEN

Compared to heart rate, body temperature and blood pressure, respiratory rate is the vital sign that has been often overlooked, largely due to the lack of easily accessible tool for reliable and natural respiration monitoring. To address this unmet need, we designed and built a wearable, stand-alone, fully integrated mask device for accurate tracking of respiration in free-living conditions. The wearable mask device can provide comprehensive respiration information in a wearable and wireless manner. It can not only accurately measure respiratory rate, tidal volume, respiratory minute volume, and peak flow rate but also recognize unique respiration pattern of the subject via Principle Component Analysis (PCA) algorithms. The reported wearable mask device and respiratory pattern recognition algorithms could be widely used in routine clinical examination, lung function assessment, asthma and chronic obstructive pulmonary disease (COPD) management, metabolic rate measurement, capnography, spirometry, sleep pattern analysis, and biometrics.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Frecuencia Cardíaca , Monitoreo Fisiológico , Respiración
16.
IEEE Sens J ; 20(10): 5510-5518, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33746622

RESUMEN

Breathing tracking is critical for the assessment of lung functions, exercise physiologies, and energy expenditure. Conventional methods require using a face mask or mouthpiece that is connected to a stationary equipment through a tube, restricting the location, movement, or even the posture. To obtain accurate breathing physiology parameters that represent the true state of the patient during different scenarios, a wearable technology that has less intervention to patient's activities in free-living conditions is highly preferred. Here, we propose a miniaturized, reliable, and wide-dynamic ranged flow sensing technology that is immune to orientation, movement, and noise. As far as we know, this is the first work of introducing a fully integrated mask device focusing on breath tracking in free-living conditions. There are two key challenges for achieving this goal: miniaturized flow sensing and motion-induced artifacts elimination. To address these challenges, we come up with two technical innovations: 1) in hardware wise, we have designed an integrated flow sensing technique based on differential pressure Pneumotach approach and motion sensing; 2) in software wise, we have developed comprehensive algorithms based baseline tracking and orientation and motion compensation. The effectiveness of the proposed technology has been proven by the experiments. Experimental results from simulator and real breath conditions show high correlation (R2 = 0.9994 and 0.9964 respectively) and mean error within 2.5% for Minute Volume (VE), when compared to values computed from reference methods. These results show that the proposed method is accurate and reliable to track the key breath parameters in free-living conditions.

17.
Anal Chem ; 92(1): 799-805, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31762258

RESUMEN

Multisensor detectors have merits of low cost, compact size, and capability of supplying accurate and reliable information otherwise hard to obtain by any single sensors. They are therefore highly desired in various applications. Despite the advantages and needs, they face great challenges in technique especially when integrating sensors with different sensing principles. To bridge the gap between the demand and technique, we here demonstrated an integration of electrochemical and colorimetric sensors with a webcam readout for multiple gas detection. Designed with two parallel gas channels but independent sensor cells, the dual-sensor detector could simultaneously detect each gas from their gas mixture by analysis of the group photo of the two sensors. Using Ag electro-dissolution as reporter, the bipolar electrochemical sensor achieved quantitative analysis for the first time thanks to application of pulse voltage. The sacrificed Ag layer used in the bipolar electrochemical (EC) sensor was recycled from CD, which further decreased the sensor cost and supplied a new way of CD recycling. The EC O2 sensor response, edge displacement of Ag layer due to electrochemical dissolution, has a linear relationship with O2 concentration ranging from 0 to 30% and has good selectivity to common oxidative gases. The colorimetric NO2 sensor linearly responded to NO2 concentrations ranging from 0 to 230 ppb with low detection limit of 10 ppb, good selectivity, and humidity tolerance. This integration method could be extended to integrating other gas sensors.

18.
Anal Chem ; 91(10): 6632-6637, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31012302

RESUMEN

Colorimetry is a popular gas-sensing platform, but it is typically limited to one-time use only. Here, we introduce a light-controlled configurable colorimetric sensing array to overcome this limitation. It features a photoactivated reaction between an analyte and a sensing material, such that sensing of an array element can be turned on and off with light. By sequential turning on of each array element, the sensor array can be used multiple times as determined by the number of array elements. This is analogous to a data storage device, which lasts until every storage element is used up. The total number of array elements and the area of each array element are configurable with light. With use of a smartphone screen as a programmable light source, we applied the sensing platform to the detection of oxygen gas and studied the relationship between sensitivity, noise, detection time, and array size. The relationship can be used to configure the array to meet the specifications of different applications.

19.
Anal Chem ; 90(21): 13030-13035, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30277058

RESUMEN

It has been established that plants can smell and respond to chemicals in order to adapt to and survive in a changing chemical environment. Here we show that a plant responds to chemicals in air, and the response can be detected rapidly to allow tracking of air pollution in real time. We demonstrate this capability by detecting subtle color and shape changes in the leaves of mosses upon exposure to sulfur dioxide in air with a simple webcam and an imaging-processing algorithm. The leaves of mosses consist of a monolayer of cells, providing a large surface-to-volume ratio for highly sensitive chemical sensing. The plant sensor responds linearly to sulfur dioxide within a wide concentration range (0-180 ppm), and it can tolerate humidity variation (15-85% relative humidity) and chemical interference and regenerate itself. We envision that plants can help alert chemical exposure danger as a part of our living environment using low-cost CMOS imagers, and their chemical-sensing capabilities may be further improved with genetic engineering.

20.
Sensors (Basel) ; 18(8)2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110932

RESUMEN

The development of connected health devices has allowed for a more accurate assessment of a person's state under free-living conditions. In this work, we use two mobile sensing devices and investigate the correlation between individual's resting metabolic rate (RMR) and volatile organic compounds (VOCs) exposure levels. A total of 17 healthy, young, and sedentary office workers were recruited, measured for RMR with a mobile indirect calorimetry (IC) device, and compared with their corresponding predicted RMR values from the Academy of Nutrition and Dietetics' recommended epidemiological equation, the Mifflin⁻St Jeor equation (MSJE). Individual differences in the RMR values from the IC device and the epidemiological equation were found, and the subjects' RMRs were classified as normal, high, or low based on a cut-off of ±200 kcal/day difference with respect to the predicted value. To study the cause of the difference, VOCs exposure levels of each participant's daytime working environment and nighttime resting environment were assessed using a second mobile sensing device for VOCs exposure detection. The results showed that all sedentary office workers had a low VOCs exposure level (<2 ppmC), and there was no obvious correlation between VOCs exposure and the RMR difference. However, an additional participant who was a worker in an auto repair shop, showed high VOCs exposure with respect to the sedentary office worker population and a significant difference between measured and predicted RMR, with a low RMR of 500 kcal/day difference. The mobile sensing devices have been demonstrated to be suitable for the assessment of direct information of human health⁻environment interactions at free-living conditions.


Asunto(s)
Metabolismo Basal/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Monitoreo Ambulatorio/instrumentación , Compuestos Orgánicos Volátiles/efectos adversos , Adulto , Calorimetría Indirecta , Ambiente , Femenino , Voluntarios Sanos , Humanos , Japón , Masculino , Conducta Sedentaria , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...