Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1353901, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720880

RESUMEN

The separate vertical wire (SVW) technique and the improved candy box (CB) technique have been proposed for treating inferior pole patellar fractures. However, there is still a lack of clear explanation regarding the location of the wire passing through the patella. Five models of SVW techniques were established in different positions. Finite element analysis was then conducted to determine the optimal bone tunnel position for the SVW technique. Based on these findings, six groups of finite element models were created for CB techniques. The maximum displacement and stress on both the patella and steel wire were compared among these groups under 100-N, 200-N, 300-N, 400-N, and 500-N force loads. The results indicated that, in the SVW technique, the steel wire group near the fracture end of the longitudinal bone tunnel showed minimal displacement and stress on the patella when subjected to different forces. On the other hand, in the CB technique, both the patella and wire experienced minimal stress when a transverse bone tunnel wire was placed near the upper posterior aspect of patella. In conclusion, the SVW technique may require the bone tunnel wire to be positioned near the fractured end of the lower pole of the patella. On the other hand, in CB technique, the transverse bone tunnel wire passing through the patella may be close to its upper posterior aspect. However, further validation is necessary through comprehensive finite element analysis and additional biomechanical experiments.

2.
JACS Au ; 3(12): 3462-3472, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38155649

RESUMEN

Enriching the palette of high-performance fluorescent dyes is vital to support the frontier of biomedical imaging. Although various rhodamine skeletons remain the premier type of small-molecule fluorophores due to the apparent high brightness and flexible modifiability, they still suffer from the inherent defect of small Stokes shift due to the nonideal fluorescence imaging signal-to-background ratio. Especially, the rising class of fluorescent dyes, sulfone-substituted xanthone, exhibits great potential, but low chemical stability is also pointed out as the problem. Molecular engineering of sulfone-xanthone to obtain a large Stokes shift and high stability is highly desired, but it is still scarce. Herein, we present the combination modification method for optimizing the performance of sulfone-xanthone. These redesigned fluorescent skeletons owned greatly improved stability and Stokes shift compared with the parent sulfone-rhodamine. To the proof of bioimaging capacity, annexin protein-targeted peptide LS301 was introduced to the most promising dyes, J-S-ARh, to form the tumor-targeted fluorescent probe, J-S-LS301. The resulting probe, J-S-LS301, can be an outstanding fluorescence tool for the orthotopic transplantation tumor model of hepatocellular carcinoma imaging and on-site pathological analysis. In summary, the combination method could serve as a basis for rational optimization of sulfone-xanthone. Overall, the chemistry reported here broadens the scope of accessible sulfone-xanthone functionality and, in turn, enables to facilitate the translation of biomedical research toward the clinical domain.

3.
ACS Sens ; 8(6): 2359-2367, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37265237

RESUMEN

Accurate detection of target analytes and generation of high-fidelity fluorescence signals are particularly critical in life sciences and clinical diagnostics. However, the majority of current NIR-I fluorescent probes are vulnerable to pH effects resulting in signal distortion. In this work, a series of fluorescence-tunable and pH-independent probes are reported by combining optically tunable groups of unsymmetric Si-rhodamines and introducing the methoxy instead of the spiro ring on the benzene ring at position 9. To validate the concept, the leucine aminopeptidase response site was introduced into Si-2,6OMe-NH2 with the best optical properties to synthesize Si-LAP for monitoring the intrahepatic LAP in vivo. Therefore, the design approach may provide a new and practical strategy for designing innovative functional fluorescent probes and generating high-stability and high-fidelity fluorescent signals.


Asunto(s)
Colorantes Fluorescentes , Leucil Aminopeptidasa , Colorantes Fluorescentes/química , Rodaminas/química , Fluorescencia , Concentración de Iones de Hidrógeno
4.
Anal Chem ; 95(18): 7294-7302, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37104743

RESUMEN

Aberrant lysosomal alkalization is associated with various biological processes, such as oxidative stress, cell apoptosis, ferroptosis, etc. Herein, we developed a novel aminofluorene-based fluorescence probe named FAN to monitor the lysosomal alkalization-related biological processes by its migration from lysosome to nucleus. FAN possessed NIR emission, large Stokes shift, high pH stability, and high photostability, making it suitable for real-time and long-term bioimaging. As a lysosomotropic molecule, FAN can accumulate in lysosomes first and then migrate to the nucleus by right of its binding capability to DNA after lysosomal alkalization. In this manner, FAN was successfully used to monitor these physiological processes which triggered lysosomal alkalization in living cells, including oxidative stress, cell apoptosis, and ferroptosis. More importantly, at higher concentrations, FAN could also serve as a stable nucleus dye for the fluorescence imaging of the nucleus in living cells and tissues. This novel multifunctional fluorescence probe shows great promise for application in lysosomal alkalization-related visual research and nucleus imaging.


Asunto(s)
Ferroptosis , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Imagen Óptica , Lisosomas/química , Apoptosis/fisiología , Concentración de Iones de Hidrógeno
5.
Chem Commun (Camb) ; 59(19): 2795-2798, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36789681

RESUMEN

An "AND" logic gate-based NIR fluorescent probe Si-NH2-Glu was developed based on novel meso-amine Si-Rhodamine, which combined γ-glutamyl transpeptidase and pH dual-responsive sites. The features of Si-NH2-Glu enable it to be applied in orthotopic tumor imaging and fluorescence-guided surgery.


Asunto(s)
Neoplasias de la Mama , Colorantes Fluorescentes , Humanos , Femenino , gamma-Glutamiltransferasa , Imagen Óptica/métodos , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...