Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Clin Cases ; 11(28): 6688-6697, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37901001

RESUMEN

BACKGROUND: Antinuclear antibodies (ANAs) are crucial in diagnosing autoimmune diseases, mainly systemic lupus erythematosus (SLE). This study aimed to compare the performance of chemiluminescence assay (CLIA) and line immunoassay (LIA) in detecting ANAs in patients with autoimmune diseases, evaluate their diagnostic accuracy for SLE, and develop a novel diagnostic model using CLIA-detected antibodies for SLE. Specimens from patients with autoimmune diseases and physical examination specimens were collected to parallel detect specific antibodies. Individual antibodies' diagnostic performance and a model combining multiple antibodies were assessed. The findings provide valuable insights into improving the diagnosis of SLE through innovative approaches. AIM: To compare the performance of CLIA and LIA in detecting ANAs in patients with autoimmune diseases, assess their accuracy for SLE, and develop a novel diagnostic model using CLIA-detected antibodies for SLE. METHODS: Specimens have been obtained from 270 patients with clinically diagnosed autoimmune disorders, as well as 130 physical examination specimens. After that, parallel detection of anti-double-stranded DNA (dsDNA) antibody, anti-histone (Histone) antibody, anti-nucleosome (Nuc) antibody, anti-Smith (Sm) antibody, anti-ribosomal P protein (Rib-P) antibody, anti-sicca syndrome A (Ro60) antibody, anti-sicca syndrome A (Ro52) antibody, anti-sicca syndrome (SSB) antibody, anti-centromere protein B (Cenp-B) antibody, anti-DNA topoisomerase 1 (Scl-70) antibody, anti-histidyl tRNA synthetase (Jo-1) antibody, and anti-mitochondrial M2 (AMA-M2) antibody was performed using CLIA and LIA. The detection rates, compliance rates, and diagnostic performance for SLE were compared between the two methodologies, followed by developing a novel diagnostic model for SLE. RESULTS: CLIA and LIA exhibited essentially comparable detection rates for anti-dsDNA antibody, anti-Histone antibody, anti-Nuc antibody, anti-Sm antibody, anti-Rib-P antibody, anti-Ro60 antibody, anti-Ro52 antibody, anti-SSB antibody, anti-Cenp-B antibody, anti-DNAScl-70 antibody, anti-Jo-1 antibody and anti-AMA-M2 antibody (P > 0.05). The two methods displayed identical results for the detection of anti-dsDNA antibody, anti-Histone antibody, anti-Nuc antibody, anti-Sm antibody, anti-Ro60 antibody, anti-Ro52 antibody, anti-SSB antibody, anti-Cenp-B antibody, anti-Scl-70 antibody, and anti-AMA-M2 antibody (Kappa > 0.7, P < 0.05), but showed a moderate agreement for the detection of anti-Rib-P antibody and anti-Jo-1 antibody (Kappa = 0.671 and 0.665; P < 0.05). In addition, the diagnostic performance of these antibodies detected by both methods was similar for SLE. The diagnostic model's area under the curve values, sensitivity, and specificity, including an anti-dsDNA antibody and an anti-Ro60 antibody detected by CLIA, were 0.997, 0.962, and 0.978, respectively. These values were higher than the diagnostic performance of individual antibodies. CONCLUSION: CLIA and LIA demonstrated excellent overall consistency in detecting ANA profiles. A diagnostic model based on CLIA-detected antibodies can successfully contribute to developing a novel technique for detecting SLE.

2.
BMC Med Genomics ; 8: 79, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26597292

RESUMEN

BACKGROUND: Neurogenic neuroprotection is a promising approach for treating patients with ischemic brain lesions. Fastigial nucleus stimulation (FNS) has been shown to reduce the tissue damage resulting from focal cerebral ischemia in the earlier studies. However, the mechanisms of neuroprotection induced by FNS remain unclear. MicroRNAs (miRNAs) are a newly discovered group of non-coding small RNA molecules that negatively regulate target gene expression and involved in the regulation of pathological process. To date, there is a lack of knowledge on the expression of miRNA in response to FNS. Thus, we study the regulation of miRNAs in the rat ischemic brain by the neuroprotection effect of FNS. METHODS: In this study, we used an established focal cerebral ischemia/reperfusion (IR) model in rats. MiRNA expression profile of rat ischemic cortex after 1 h of FNS were investigated using deep sequencing. Microarray was performed to study the expression pattern of miRNAs. Functional annotation on the miRNA was carried out by bioinformatics analysis. RESULTS: Two thousand four hundred ninety three miRNAs were detected and found to be miRNAs or miRNA candidates using deep sequencing technology. We found that the FNS-related miRNAs were differentially expressed according microarray data. Bioinformatics analysis indicated that several differentially expressed miRNAs might be a central node of neuroprotection-associated genetic networks and contribute to neuroprotection induced by FNS. CONCLUSIONS: MiRNA acts as a novel regulator and contributes to FNS-induced neuroprotection. Our study provides a better understanding of neuroprotection induced by FNS.


Asunto(s)
Núcleos Cerebelosos , Biología Computacional , Estimulación Encefálica Profunda , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , Neuroprotección/genética , Análisis de Secuencia de ARN , Animales , Isquemia Encefálica/complicaciones , Masculino , Anotación de Secuencia Molecular , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/complicaciones , Daño por Reperfusión/genética , Daño por Reperfusión/fisiopatología , Daño por Reperfusión/terapia
3.
J Neurochem ; 133(6): 926-34, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25783478

RESUMEN

Previous studies have shown that fastigial nucleus stimulation (FNS) reduces tissue damage resulting from focal cerebral ischemia. Although the mechanisms of neuroprotection induced by FNS are not entirely understood, important data have been presented in the past two decades. MicroRNAs (miRNAs) are a newly discovered group of non-coding small RNA molecules that negatively regulate target gene expression and are involved in the regulation of cell proliferation and cell apoptosis. To date, no studies have demonstrated whether miRNAs can serve as mediators of the brain's response to FNS, which leads to endogenous neuroprotection. Therefore, this study investigated the profiles of FNS-mediated miRNAs. Using a combination of deep sequencing and microarray with computational analysis, we identified a novel miRNA in the rat ischemic cortex after 1 h of FNS. This novel miRNA (PC-3p-3469_406), herein referred to as rno-miR-676-1, was upregulated in rats with cerebral ischemia after FNS. In vivo observations indicate that this novel miRNA may have antiapoptotic effects and contribute to neuroprotection induced by FNS. Our study provides a better understanding of neuroprotection induced by FNS. MicroRNA (miRNA) is defined as a small non-coding RNA that fulfills both the expression and biogenesis criteria. Here, we describe a novel miRNA in the rat ischemic cortex expressed after 1 h of fastigial nucleus stimulation (FNS). The miRNA was functionally characterized by secondary structure, quantitative expression, the conservation analysis, target gene analysis, and biological functions. We consider rno-miR-676-1 to be a true microRNA and present evidence for its neuroprotective effects exerted after induction by FNS.


Asunto(s)
Núcleos Cerebelosos/fisiología , Terapia por Estimulación Eléctrica , Infarto de la Arteria Cerebral Media/fisiopatología , MicroARNs/biosíntesis , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Etiquetado Corte-Fin in Situ , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
CNS Neurosci Ther ; 21(6): 496-503, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25678279

RESUMEN

AIMS: Studies showed fastigial nucleus stimulation (FNS) reduced brain damage, but the mechanisms of neuroprotection induced by FNS were not entirely understood; MicroRNAs are noncoding RNA molecules that regulate gene expression in a posttranscriptional manner, but their functional consequence in response to ischemia-reperfusion (IR) remains unknown. We investigated the role of microRNA-29c in the neuroprotection induced by FNS in rat. METHODS: The IR rat models were conducted 1 day after FNS. Besides, miR-29c antagomir (or agomir or control) was infused to the left intracerebroventricular 1 day before IR models were conducted. We detected differential expression of Birc2 mRNA (also Bak1mRNA and miR-29c) level among different groups by RT-qPCR. The differential expression of Birc2 protein (also Bak1 protein) level among different groups was surveyed via Western blot. The neuroprotective effects were assessed by infarct volume, neurological deficit, and apoptosis. RESULTS: MiR-29c was decreased after FNS. Moreover, miR-29c directly bound to the predicted 3'-UTR target sites of Birc2 and Bak1 genes. Furthermore, over-expression of miR-29c effectively reduced Birc2 (also Bak1) mRNA and protein levels, increased infarct volume and apoptosis, and deteriorated neurological outcomes, whereas down-regulation played a neuroprotective role. CONCLUSIONS: MiR-29c correlates with the neuroprotection induced by FNS by negatively regulating Birc2 and Bak1.


Asunto(s)
Núcleos Cerebelosos/fisiología , Estimulación Encefálica Profunda/métodos , Proteínas Inhibidoras de la Apoptosis/metabolismo , MicroARNs/metabolismo , Accidente Cerebrovascular/terapia , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Análisis de Varianza , Animales , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/etiología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Etiquetado Corte-Fin in Situ , Proteínas Inhibidoras de la Apoptosis/genética , Masculino , MicroARNs/antagonistas & inhibidores , Mutación/genética , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/etiología , Oligonucleótidos Antisentido/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Proteína Destructora del Antagonista Homólogo bcl-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...