Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 11(1): 168, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650178

RESUMEN

On-chip spatial mode operation, represented as mode-division multiplexing (MDM), can support high-capacity data communications and promise superior performance in various systems and numerous applications from optical sensing to nonlinear and quantum optics. However, the scalability of state-of-the-art mode manipulation techniques is significantly hindered not only by the particular mode-order-oriented design strategy but also by the inherent limitations of possibly achievable mode orders. Recently, metamaterials capable of providing subwavelength-scale control of optical wavefronts have emerged as an attractive alternative to manipulate guided modes with compact footprints and broadband functionalities. Herein, we propose a universal yet efficient design framework based on the topological metamaterial building block (BB), enabling the excitation of arbitrary high-order spatial modes in silicon waveguides. By simply programming the layout of multiple fully etched dielectric metamaterial perturbations with predefined mathematical formulas, arbitrary high-order mode conversion and mode exchange can be simultaneously realized with uniform and competitive performance. The extraordinary scalability of the metamaterial BB frame is experimentally benchmarked by a record high-order mode operator up to the twentieth. As a proof of conceptual application, an 8-mode MDM data transmission of 28-GBaud 16-QAM optical signals is also verified with an aggregate data rate of 813 Gb/s (7% FEC). This user-friendly metamaterial BB concept marks a quintessential breakthrough for comprehensive manipulation of spatial light on-chip by breaking the long-standing shackles on the scalability, which may open up fascinating opportunities for complex photonic functionalities previously inaccessible.

2.
Opt Lett ; 45(13): 3797-3800, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630957

RESUMEN

Ultra-compact mode-order converters with dielectric slots are demonstrated on a silicon-on-insulator platform. We propose a mode converter that converts the TE0 mode into the TE1 mode with an ultra-small footprint of only 0.8×1.2µm2. The measured insertion loss is less than 1.2 dB from 1520 nm to 1570 nm. To reduce the insertion loss, we further optimize the structure and design two mode converters that convert the TE0 mode into the TE1 mode and the TE2 mode with footprints of 0.88×2.3µm2 and 1.4×2.4µm2, respectively. Their measured insertion losses are both less than 0.5 dB. Additionally, the proposed devices are cascadable and scalable for high-order mode conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...