Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Diabetol ; 23(1): 187, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822373

RESUMEN

BACKGROUND: Ischemia and no obstructive coronary artery disease (INOCA) is increasingly recognized and associated with poor outcomes. The triglyceride-glucose (TyG) index is a reliable alternative measure of insulin resistance significantly linked to cardiovascular disease and adverse prognosis. We investigated the association between the TyG index and myocardial ischemia and the prognosis in INOCA patients. METHODS: INOCA patients who underwent both coronary angiography and myocardial perfusion imaging (MPI) were included consecutively. All participants were divided into three groups according to TyG tertiles (T1, T2, and T3). Abnormal MPI for myocardial ischemia in individual coronary territories was defined as summed stress score (SSS) ≥ 4 and summed difference score (SDS) ≥ 2. SSS refers to the sum of all defects in the stress images, and SDS is the difference of the sum of all defects between the rest images and stress images. All patients were followed up for major adverse cardiac events (MACE). RESULTS: Among 332 INOCA patients, 113 (34.0%) had abnormal MPI. Patients with higher TyG index had a higher rate of abnormal MPI (25.5% vs. 32.4% vs. 44.1%; p = 0.012). Multivariate logistic analysis showed that a high TyG index was significantly correlated with abnormal MPI in INOCA patients (OR, 1.901; 95% CI, 1.045-3.458; P = 0.035). During the median 35 months of follow-up, 83 (25%) MACE were recorded, and a higher incidence of MACE was observed in the T3 group (T3 vs. T2 vs. T1: 36.9% vs. 21.6% vs. 16.4%, respectively; p = 0.001). In multivariate Cox regression analysis, the T3 group was significantly associated with the risk of MACE compared to the T1 group (HR, 2.338; 95% CI 1.253-4.364, P = 0.008). CONCLUSION: This study indicates for the first time that the TyG index is significantly associated with myocardial ischemia and poor prognosis among INOCA patients.


Asunto(s)
Biomarcadores , Glucemia , Angiografía Coronaria , Isquemia Miocárdica , Imagen de Perfusión Miocárdica , Valor Predictivo de las Pruebas , Triglicéridos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Triglicéridos/sangre , Pronóstico , Isquemia Miocárdica/sangre , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/mortalidad , Isquemia Miocárdica/epidemiología , Biomarcadores/sangre , Glucemia/metabolismo , Factores de Riesgo , Medición de Riesgo , Estudios Retrospectivos , Factores de Tiempo , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/mortalidad , Resistencia a la Insulina
2.
Cardiovasc Diabetol ; 22(1): 255, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735427

RESUMEN

BACKGROUND: The Atherogenic Index of Plasma (AIP) is a newly identified biomarker associated with lipid metabolism, demonstrating significant prognostic capabilities in individuals diagnosed with cardiovascular disease. However, its impact within the context of chronic coronary syndromes (CCS) remains unexplored. Thus, the present investigation sought to examine the potential association between AIP levels and long-term clinical outcomes in patients diagnosed with CCS. METHODS: A total of 404 patients diagnosed with CCS and who underwent coronary angiography were included in this study. The AIP index was calculated as log (triglycerides / high-density lipoprotein-cholesterol). The patients were categorized into four groups based on their AIP values: Q1 (< -0.064), Q2 (-0.064 to 0.130), Q3 (0.130 to 0.328), and Q4 (> 0.328). The occurrence of major adverse cardiovascular events (MACE) was monitored during the follow-up period for all patients. Cox regression analysis and Kaplan-Meier curve analysis were employed to examine the relationship between AIP and MACE. Furthermore, ROC analysis was utilized to determine the optimal cut-off value of AIP for predicting clinical MACE. RESULTS: During the median 35 months of follow-up, a total of 88 patients experienced MACE. Notably, the group of patients with higher AIP values (Q4 group) exhibited a significantly higher incidence of MACE compared to those with lower AIP values (Q1, Q2, and Q3 groups) (31.7% vs. 16.8%, 15.7%, and 23.0% respectively; P = 0.023). The Kaplan-Meier curves illustrated those patients in the Q4 group had the highest risk of MACE relative to patients in the other groups (log-rank P = 0.014). Furthermore, the multivariate Cox regression analysis demonstrated that individuals in the Q4 group had a 7.892-fold increased risk of MACE compared to those in the Q1 group (adjusted HR, 7.892; 95% CI 1.818-34.269; P = 0.006). Additionally, the ROC curve analysis revealed an optimal AIP cut-off value of 0.24 for predicting clinical MACE in patients with CCS. CONCLUSION: Our data indicate, for the first time, that AIP is independently associated with poor long-term prognosis in patients suffering from CCS. The optimal AIP cut-off value for predicting clinical MACE among CCS patients was 0.24.


Asunto(s)
Enfermedades Cardiovasculares , Corazón , Humanos , Síndrome , Pronóstico , Angiografía Coronaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...