Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME Commun ; 4(1): ycad015, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38439944

RESUMEN

Plants actively recruit microbes from the soil, forming species-specific root microbiomes. However, their relationship with plant adaptations to temperature and precipitation remains unclear. Here we examined the host-selected and conserved microbiomes of 13 native plant species in the Xilingol steppe, Inner Mongolia, a semi-arid region in China. By calculating the global precipitation and temperature niches of these plants, considering plant phylogenetic distances, and analyzing functional traits, we found that these factors significantly influenced the rhizosphere microbiome assembly. We further quantified the strength of host selection and observed that plants with wider precipitation niches exhibited greater host selection strength in their rhizosphere microbiome assembly and higher rhizosphere bacterial diversity. In general, the rhizosphere microbiome showed a stronger link to plant precipitation niches than temperature niches. Haliangium exhibited consistent responsiveness to host characteristics. Our findings offer novel insights into host selection effects and the ecological determinants of wild plant rhizosphere microbiome assembly, with implications for steering root microbiomes of wild plants and understanding plant-microbiome evolution.

2.
J Gen Appl Microbiol ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989280

RESUMEN

Phytophthora species are highly destructive soilborne oomycetes pathogens that spread through infested soil and water. Ochrobactrum pseudogrignonense NC1 has been shown to inhibit plant parasitic nematodes via volatile organic compounds (VOCs). In this study, we investigated the inhibitory effect of O. pseudogrignonense NC1 against four Phytophthora species on agar plates and in vivo bioassay. We found that NC1 significantly inhibited the mycelial growth and zoospore production of all four species of Phytophthora in a dose-dependent manner. The half maximal inhibitory concentration (IC50) values for inhibition of mycelial growth (or zoospore production) were 26% (14.8%), 18.9% (14.2%), 20.3% (8.3%) and 46.9% (4%) for Phytophthora capsici Leonian, Phytophthora infestans, Phytophthora parasitica var. nicotiana and Phytophthora sojae, respectively. The biocontrol efficiency of NC1 was 46.3% in pepper seedlings against P. capsici, almost 100% in potato tubers against P. infestans, 60% in tomato leave against P. parasitica and 100% in soybean leave against P. sojae, respectively. Our findings suggest that O. pseudogrignonense NC1 has great potential as a biocontrol agent for managing Phytophthora diseases.

3.
Nat Commun ; 14(1): 7376, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968349

RESUMEN

Fusion of individual vesicles carrying membrane-building materials with the plasma membrane (PM) enables gradual cell expansion and shape change. Constricting ring (CR) cells of carnivorous fungi triple in size within 0.1-1 s to capture passing nematodes. Here, we investigated how a carnivorous fungus, Drechslerella dactyloides, executes rapid and irreversible PM expansion during CR inflation. During CR maturation, vesicles carrying membrane-building materials accumulate and fuse, forming a structure named the Palisade-shaped Membrane-building Structure (PMS) around the rumen side of ring cells. After CR inflation, the PMS disappears, with partially inflated cells displaying wavy PM and fully inflated cells exhibiting smooth PM, suggesting that the PMS serves as the reservoir for membrane-building materials to enable rapid and extensive PM expansion. The DdSnc1, a v-SNARE protein, accumulates at the inner side of ring cells and is necessary for PMS formation and CR inflation. This study elucidates the unique cellular mechanisms underpinning rapid CR inflation.


Asunto(s)
Ascomicetos , Nematodos , Animales , Membrana Celular/metabolismo , Proteínas SNARE/metabolismo , Fusión de Membrana
4.
J Fungi (Basel) ; 9(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37888231

RESUMEN

(1) Background: the low-affinity calcium uptake system (LACS) has been shown to play a crucial role in the conidiation and formation of adhesive nets and knobs by nematode-trapping fungi (NTF), but its involvement in the formation of constricting rings (CRs), mechanical traps to capture free-living nematodes, remains unexplored. (2) Methods: we investigated the function of two LACS genes (DdaFIG_1 and DdaFIG_2) in Drechslerella dactyloides, an NTF that forms CRs. We generated single (DdaFIG_1Ri and DdaFIG_2Ri) and double (DdaFIG_1,2Ri) knockdown mutants via the use of RNA interference (RNAi). (3) Results: suppression of these genes significantly affected conidiation, trap formation, vegetative growth, and response to diverse abiotic stresses. The number of CRs formed by DdaFIG_1Ri, DdaFIG_2Ri, and DdaFIG_1,2Ri decreased to 58.5%, 59.1%, and 38.9% of the wild-type (WT) level, respectively. The ring cell inflation rate also decreased to 73.6%, 60.6%, and 48.8% of the WT level, respectively. (4) Conclusions: the LACS plays multiple critical roles in diverse NTF.

5.
Mycology ; 14(3): 239-255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583459

RESUMEN

Within the supergroup Rotosphaeromycetes, or "Holomycota"/"Nucletmycea", there are several well-recognised unicellular clades in the earliest diverging fungi (EDF). However, we know little about their occurrence. Here, we investigated EDF in the rhizosphere and bulk soils from cropland, forest, orchard, and wetland ecosystems around the Beijing-Hebei area, China, to illustrate their niche and ecosystem preference. More than 500 new operational taxonomic units (OTUs) of EDF were detected based on the 18S rRNA genes. Microsporida and Aphelida constitute dominant groups, whereas Rozellosporida was quite rare. Although the EDF community was site-specific, the soil chemical characteristics, vegetation, and other eukaryotic microorganisms were the key factors driving the occurrence of EDF. Moreover, the stochastic process consisted the most of the EDF community assembly.

6.
Fungal Genet Biol ; 166: 103782, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36849068

RESUMEN

Calcium ion (Ca2+) is a universal second messenger involved in regulating diverse processes in animals, plants, and fungi. The low-affinity calcium uptake system (LACS) participates in acquiring Ca2+ from extracellular environments under high extracellular Ca2+ concentration. Unlike most fungi, which encode only one protein (FIG1) for LACS, nematode-trapping fungi (NTF) encode two related proteins. AoFIG_2, the NTF-specific LACS component encoded by adhesive network-trap forming Arthrobotrys oligospora, was shown to be required for conidiation and trap formation. We characterized the role of DhFIG_2, an AoFIG_2 ortholog encoded by knob-trap forming Dactylellina haptotyla, in growth and development to expand our understanding of the role of LACS in NTF. Because repeated attempts to disrupt DhFIG_2 failed, knocking down the expression of DhFIG_2 via RNA interference (RNAi) was used to study its function. RNAi of DhFIG_2 significantly decreased its expression, severely reduced conidiation and trap formation, and affected vegetative growth and stress responses, suggesting that this component of LACS is crucial for trap formation and conidiation in NTF. Our study demonstrated the utility of RNAi assisted by ATMT for studying gene function in D. haptotyla.


Asunto(s)
Calcio , Nematodos , Animales , Nematodos/genética , Nematodos/microbiología , Transporte Biológico
7.
Mycology ; 14(4): 326-343, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187882

RESUMEN

Rock-inhabiting fungi (RIF) are slow-growing microorganisms that inhabit rocks and exhibit exceptional stress tolerance owing to their thick melanised cell walls. This study reports the identification of a novel rock-inhabiting fungus, Cladophialophora brunneola sp. nov. which was isolated from a karst landform in Guizhou, China, using a combination of morphological and phylogenetic analyses. The genome of C. brunneola was sequenced and assembled, with a total size of approximately 33.8 Mb, encoding 14,168 proteins and yielding an N50 length of 1.88 Mb. C. brunneola possessed a larger proportion of species-specific genes, and phylogenomic analysis positioned it in an early diverged lineage within Chaetothyriales. In comparison to non-RIF, C. brunneola displayed reduction in carbohydrate-active enzyme families (CAZymes) and secondary metabolite biosynthetic gene clusters (BGCs). Transcriptome analysis conducted under PEG-induced drought stress revealed elevated expression levels of genes associated with melanin synthesis pathways, cell wall biosynthesis, and lipid metabolism. This study contributes to our understanding of the genomic evolution and polyextremotolerance exhibited by rock-inhabiting fungi.

8.
Microbiol Spectr ; 10(6): e0187222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36287065

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play conserved roles in membrane fusion events in eukaryotes and have been documented to be involved in fungal growth and pathogenesis. However, little is known about the roles of SNAREs in trap morphogenesis in nematode-trapping fungi (NTF). Drechslerella dactyloides, one of the constricting ring-forming NTF, captures free-living nematodes via rapid ring cell inflation. Here, we characterized DdVam7 of D. dactyloides, a homolog of the yeast SNARE protein Vam7p. Deletion of DdVam7 significantly suppressed vegetative growth and conidiation. The mutation significantly impaired trap formation and ring cell inflation, resulting in a markedly decreased nematode-trapping ability. A large vacuole could develop in ring cells within ~2.5 s after instant inflation in D. dactyloides. In the ΔDdVam7 mutant, the vacuoles were small and fragmented in hyphae and uninflated ring cells, and the large vacuole failed to form in inflated ring cells. The localization of DdVam7 in vacuoles suggests its involvement in vacuole fusion. In summary, our results suggest that DdVam7 regulates vegetative growth, conidiation, and the predatory process by mediating vacuole assembly in D. dactyloides, and this provides a basis for studying mechanisms of SNAREs in NTF and ring cell rapid inflation. IMPORTANCE D. dactyloides is a nematode-trapping fungus that can capture nematodes through a constricting ring, the most sophisticated trapping device. It is amazing that constricting ring cells can inflate to triple their size within seconds to capture a nematode. A large centrally located vacuole is a unique signature associated with inflated ring cells. However, the mechanism underpinning trap morphogenesis, especially vacuole dynamics during ring cell inflation, remains unclear. Here, we documented the dynamics of vacuole assembly during ring cell inflation via time-lapse imaging for the first time. We characterized a SNARE protein in D. dactyloides (DdVam7) that was involved in vacuole assembly in hyphae and ring cells and played important roles in vegetative growth, conidiation, trap morphogenesis, and ring cell inflation. Overall, this study expands our understanding of biological functions of the SNARE proteins and vacuole assembly in NTF trap morphogenesis and provides a foundation for further study of ring cell rapid inflation mechanisms.


Asunto(s)
Ascomicetos , Proteínas Fúngicas , Nematodos , Proteínas SNARE , Animales , Ascomicetos/genética , Proteínas Fúngicas/metabolismo , Nematodos/microbiología , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vacuolas/metabolismo
9.
J Fungi (Basel) ; 8(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35887505

RESUMEN

The Ca2+/calmodulin-dependent signaling pathway regulates diverse cellular processes. Calcineurin is a calcium-dependent phosphatase acting in fungi mainly through Crz1, a zinc finger transcription factor. Although the likely involvement of Ca2+ in fungal carnivorism has been documented, how Crz1 functions in nematode-trapping fungi remains unknown. Here, we identified the Crz1 gene (named as DdaCrz1) in Drechslerella dactyloides, a species that forms constricting rings to trap nematodes. The deletion of DdaCrz1 significantly reduced hyphal growth and conidiation, trap formation, and ring cell inflation. Moreover, the mutation increased sensitivity to Mn2+ but decreased sensitivity to Ca2+, Mg2+, Zn2+, and Li+. Similarly, the mutant showed increased tolerance to osmotic stress but was more sensitive to Congo red, a cell wall-damaging agent. Our results confirmed the critical roles of the Ca2+/calmodulin-dependent signaling pathway in regulating growth, conidiation, and the stress response, and suggested its involvement in trapping nematodes.

10.
Front Microbiol ; 13: 892437, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814693

RESUMEN

Fu Brick tea is a very popular post-fermented tea that is known for its "golden flower fungus," Aspergillus cristatus, which becomes the dominant microbe during the maturation process. This study used both culture-dependent methods and high-throughput sequencing to track microbial succession and interactions during the development of the golden flower fungus, a crucial component of the manufacturing process of Fu Brick tea. Among the bacterial communities, Klebsiella and Lactobacillus were consistently cultured from both fresh tea leaves and in post-fermentation Fu Brick tea. Methylobacterium, Pelomonas, and Sphingomonas were dominant genera in fresh tea leaves but declined once fermentation started, while Bacillus, Kluyvera, and Paenibacillus became dominant after piling fermentation. The abundance of A. cristatus increased during the manufacturing process, accounting for over 98% of all fungi present after the golden flower bloom in the Fu Brick tea product. Despite their consistent presence during culture work, network analysis showed Lactobacillus and Klebsiella to be negatively correlated with A. cristatus. Bacillus spp., as expected from culture work, positively correlated with the presence of golden flower fungus. This study provides complete insights about the succession of microbial communities and highlights the importance of co-occurrence microbes with A. cristatus during the manufacturing process of Fu Brick tea.

11.
Mycology ; 13(1): 1-31, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186410

RESUMEN

Rock-inhabiting fungi (RIF) constitute an ecological group associated with terrestrial rocks. This association is generally restricted to the persistent colonisation of rocks and peculiar morphological features based on melanisation and slow growth, which endow RIF with significance in eukaryotic biology, special status in ecology, and exotic potential in biotechnology. There is a need to achieve a better understanding of the hidden biodiversity, antistress biology, origin and convergent evolution of RIF, which will facilitate cultural relic preservation, exploitation of the biogeochemical cycle of rock elements and biotechnology applications. This review focuses on summarising the current knowledge of rock-inhabiting fungi, with particular reference to terminology, biodiversity and geographic distribution, origin and evolution, and stress adaptation mechanisms. We especially teased out the definition through summing up the terms related to rock-inhabting fungi, and also provided a checklist of rock-inhabiting fungal taxa recorded following updated classification schemes.

12.
Plant Dis ; 106(5): 1358-1365, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34844448

RESUMEN

Root-knot nematodes (Meloidogyne spp.) are obligate plant parasites that cause severe economic losses to agricultural crops worldwide. Because of serious health and environmental concerns related to the use of chemical nematicides, the development of efficient alternatives is of great importance. Biological control through exploiting the potential of rhizosphere microorganisms is currently accepted as an important approach for pest management in sustainable agriculture. In our research, during screening of rhizosphere bacteria against the root-knot nematodes Meloidogyne incognita, Ochrobactrum pseudogrignonense strain NC1 from the rhizosphere of healthy tomatoes showed strong nematode inhibition. A volatile nematicidal assay showed that the cell-free fermentation filtrate in the first-row wells of 12-well tissue culture plates caused M. incognita juvenile mortality in the second-row wells. Gas chromatography-mass spectrometry analysis revealed that dimethyl disulfide (DMDS) and benzaldehyde were the main volatile compounds produced by strain NC1. The nematicidal activity of these compounds indicated that the lethal concentration 50 against the M. incognita juveniles in the second-row wells and the fourth-row wells were 23.4 µmol/ml and 30.7 µmol/ml for DMDS and 4.7 µmol/ml and 15.2 µmol/ml for benzaldehyde, respectively. A greenhouse trial using O. pseudogrignonense strain NC1 provided management efficiencies of root-knot nematodes of 88 to 100% compared with the untreated control. This study demonstrated that nematode-induced root-gall suppression mediated by the bacterial volatiles DMDS and benzaldehyde presents a new opportunity for root-knot nematode management.


Asunto(s)
Solanum lycopersicum , Tylenchoidea , Animales , Antinematodos/farmacología , Bacterias , Benzaldehídos , Solanum lycopersicum/microbiología , Tylenchoidea/fisiología
13.
Appl Microbiol Biotechnol ; 105(19): 7379-7393, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34536100

RESUMEN

Ste12 transcription factors, downstream of mitogen-activated protein kinase (MAPK) signalling pathways, are exclusively found in the fungal kingdom and regulate fungal mating, development, and pathogenicity. The nematode-trapping fungus Drechslerella dactyloides can capture free-living nematodes using constricting rings by cell inflation within 1 s when stimulated by nematodes entering the rings. The MAPK signalling pathways are involved in the trap formation of nematode-trapping fungi, but their downstream regulation is not clearly understood. In this study, disruption of the DdaSTE12 gene in D. dactyloides disabled cell inflation of constricting rings and led to an inability to capture nematodes. The number of septa of constricting rings and the ring cell vacuoles were changed in ΔDdaSTE12. Compared with the wild type, ΔDdaSTE12 reduced trap formation, conidiation, and vegetative growth by 79.3%, 80.3%, and 21.5%, respectively. The transcriptomes of ΔDdaSTE12-3, compared with those of the wild type, indicated that the expression of genes participating in trap formation processes, including signal transduction (Gpa2 and a 7-transmembrane receptor), vesicular transport and cell fusion (MARVEL domain-containing proteins), and nematode infection (PEX11 and CFEM domain-containing proteins), is regulated by DdaSTE12. The results suggest that DdaSTE12 is involved in trap formation and ring cell inflation, as well as conidiation and vegetative growth, by regulating a wide range of downstream functions. Our findings expanded the roles of Ste12 homologous transcription factors in the development of constricting rings and provided new insights into the downstream regulation of the MAPK signalling pathway involved in nematode predation. KEY POINTS: • DdaSTE12 was the first gene disrupted in D. dactyloides. • DdaSTE12 is related to ring cell inflation, vegetative growth, and conidiation. • DdaSTE12 deletion resulted in defects in trap formation and ring development.


Asunto(s)
Nematodos , Animales , Ascomicetos , Hongos
14.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2688-2702, 2021 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-34472289

RESUMEN

Plastics are widely used in daily life. Due to poor management and disposal, about 80% of plastic wastes were buried in landfills and eventually became land and ocean waste, causing serious environmental pollution. Recycling plastics is a desirable approach, but not applicable for most of the plastic waste. Microbial degradation offers an environmentally friendly way to degrade the plastic wastes, and this review summarizes the potential microbes, enzymes, and the underpinning mechanisms for degrading six most commonly used plastics including polyethylene terephthalate, polyethylene, polyvinyl chloride, polypropylene, polystyrene and polyurethane. The challenges and future perspectives on microbial degradation of plastics were proposed.


Asunto(s)
Plásticos , Reciclaje , Biodegradación Ambiental , Poliuretanos
15.
Fungal Biol ; 125(7): 532-540, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34140149

RESUMEN

The N-end rule pathway is a regulated protein degradation system. Arthrobotrys oligospora, a typical nematode-trapping fungus, switches its life strategies from saprophytism to carnivorism when capturing free-living nematodes by means of adhesive networks. In this study, a putative E3-ligase AoUBR1 involved in N-end rule pathway was characterized in A. oligospora during vegetative growth and trap formation. Expression of AoUBR1 coding gene was down-regulated during trap formation. Compared with wild type, the AoUBR1 knock-out mutants decreased the vegetative growth, formed less traps, and turned to be sensitive to cold stress, while, AoUBR1 overexpression mutants lost the capacity to produce conidia and also formed less traps. A number of genes differentially expressed by knock-out and overexpression of AoUBR1, which lead to the transcriptional responses associated with plasma membrane, transportation, oxidation, and proteolysis. AoUBR1 knock-out also resulted in the down-regulation of numerous secreted proteins associated with carnivorism and nutrient utilization from nematodes. In addition, AoUBR1 homologs were conserved in nematode-trapping fungi based on the genome searching. Therefore, the results suggested AoUBR1 in A. oligospora and its homologs in other trapping fungi are involved in the lifestyle switch between saprophytism and carnivorism.


Asunto(s)
Ascomicetos , Ubiquitina-Proteína Ligasas , Animales , Ascomicetos/enzimología , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Regulación Fúngica de la Expresión Génica , Técnicas de Inactivación de Genes , Nematodos/microbiología , Esporas Fúngicas/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
J Ind Microbiol Biotechnol ; 48(9-10)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33640980

RESUMEN

Cryptococcus neoformans is a serious human pathogen with limited options for treatment. We have interrogated extracts from fungal fermentations to find Cryptococcus-inhibiting natural products using assays for growth inhibition and differential thermosensitivity. Extracts from fermentations of four fungal strains from wild and domestic animal dung from Arkansas and West Virginia, USA were identified as Preussia typharum. The extracts exhibited two antifungal regions. Purification of one region yielded new 24-carbon macrolides incorporating both a phosphoethanolamine unit and a bridging tetrahydrofuran ring. The structures of these metabolites were established mainly by analysis of high-resolution mass spectrometry and 2D NMR data. Relative configurations were assigned using NOESY data, and the structure assignments were supported by NMR comparison with similar compounds. These new metabolites are designated preussolides A and B. The second active region was caused by the cytotoxin, leptosin C. Genome sequencing of the four strains revealed biosynthetic gene clusters consistent with those known to encode phosphoethanolamine-bearing polyketide macrolides and the biosynthesis of dimeric epipolythiodioxopiperazines. All three compounds showed moderate to potent and selective antifungal activity toward the pathogenic yeast C. neoformans.


Asunto(s)
Cryptococcus neoformans , Macrólidos , Animales , Antifúngicos/farmacología , Ascomicetos , Etanolaminas , Humanos , Alcaloides Indólicos , Macrólidos/farmacología
17.
J Fungi (Basel) ; 6(4)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987844

RESUMEN

Rock-inhabiting fungi (RIF) are nonlichenized fungi that naturally colonize rock surfaces and subsurfaces. The extremely slow growth rate and lack of distinguishing morphological characteristics of RIF resulted in a poor understanding on their biodiversity. In this study, we surveyed RIF colonizing historical stone monuments and natural rock formations from throughout China. Among over 1000 isolates, after preliminary delimitation using the internal transcribed spacer region (ITS) sequences, representative isolates belonging to Trichomeriaceae and Herpotrichiellaceae were selected for a combined analysis of ITS and the nuclear ribosomal large subunit (nucLSU) to determine the generic placements. Eight clades representing seven known genera and one new genus herein named as Anthracina were placed in Trichomeriaceae. While, for Herpotrichiellaceae, two clades corresponded to two genera: Cladophialophora and Exophiala. Fine-scale phylogenetic analyses using combined sequences of the partial actin gene (ACT), ITS, mitochondrial small subunit ribosomal DNA (mtSSU), nucLSU, the largest subunit of RNA polymerase II (RPB1), small subunit of nuclear ribosomal RNA gene (SSU), translation elongation factor (TEF), and ß-tubulin gene (TUB) revealed that these strains represented 11 and 6 new species, respectively, in Trichomeriaceae and Herpotrichiellaceae. The 17 new species were described, illustrated for their morphologies and compared with similar taxa. Our study demonstrated that the diversity of RIF is surprisingly high and still poorly understood. In addition, a rapid strategy for classifying RIF was proposed to determine the generic and familial placements through preliminary ITS and nucLSU analyses, followed by combined analyses of five loci selected from ACT, ITS, mtSSU, nucLSU, RPB1, and/or the second subunit of RNA polymerase II gene (RPB2), SSU, TEF, and TUB regions to classify RIF to the species level.

18.
Mycology ; 10(3): 127-140, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31448147

RESUMEN

The global bio-diversity of fungi has been extensively investigated and their species number has been estimated. Notably, the development of molecular phylogeny has revealed an unexpected fungal diversity and utilisation of culture-independent approaches including high-throughput amplicon sequencing has dramatically increased number of fungal operational taxonomic units. A number of novel taxa including new divisions, classes, orders and new families have been established in last decade. Many cryptic species were identified by molecular phylogeny. Based on recently generated data from culture-dependent and -independent survey on same samples, the fungal species on the earth were estimated to be 12 (11.7-13.2) million compared to 2.2-3.8 million species recently estimated by a variety of the estimation techniques. Moreover, it has been speculated that the current use of high-throughput sequencing techniques would reveal an even higher diversity than our current estimation. Recently, the formal classification of environmental sequences and permission of DNA sequence data as fungal names' type were proposed but strongly objected by the mycologist community. Surveys on fungi in unusual niches have indicated that many previously regarded "unculturable fungi" could be cultured on certain substrates under specific conditions. Moreover, the high-throughput amplicon sequencing, shotgun metagenomics and a single-cell genomics could be a powerful means to detect novel taxa. Here, we propose to separate the fungal types into physical type based on specimen, genome DNA (gDNA) type based on complete genome sequence of culturable and uncluturable fungal specimen and digital type based on environmental DNA sequence data. The physical and gDNA type should have priority, while the digital type can be temporal supplementary before the physical type and gDNA type being available. The fungal name based on the "digital type" could be assigned as the "clade" name + species name. The "clade" name could be the name of genus, family or order, etc. which the sequence of digital type affiliates to. Facilitating future cultivation efforts should be encouraged. Also, with the advancement in knowledge of fungi inhabiting various environments mostly because of rapid development of new detection technologies, more information should be expected for fungal diversity on our planet.

20.
Sci Rep ; 9(1): 4440, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30872626

RESUMEN

Arthrobotrys oligospora is a typical nematode-trapping fungus capturing free-living nematodes by adhesive networks. Component of the low-affinity calcium uptake system (LACS) has been documented to involve in growth and sexual development of filamentous fungi. Bioassay showed incapacity of trap formation in A. oligospora on Water Agar plate containing 1 mM ethylene glycol tetraacetic acid (EGTA) due to Ca2+ absorbing block. The functions of homologous proteins (AoFIG_1 and AoFIG_2) of LACS were examined on conidiation and trap formation of A. oligospora. Compared with wild type, ΔAoFIG_1 (AOL_s00007g566) resulted in 90% of trap reduction, while ΔAoFIG_2 (AOL_s00004g576) reduced vegetative growth rate up to 44% and had no trap and conidia formed. The results suggest that LACS transmembrane protein fig1 homologs play vital roles in the trap-formation and is involved in conidiation and mycelium growth of A. oligospora. Our findings expand fig1 role to include development of complex trap device and conidiation.


Asunto(s)
Ascomicetos/fisiología , Calcio/metabolismo , Proteínas Fúngicas/metabolismo , Nematodos , Animales , Caenorhabditis elegans , Ácido Egtácico , Proteínas Fúngicas/genética , Genoma Fúngico , Filogenia , Dominios Proteicos , Esporas Fúngicas , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...