Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 434: 115814, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843800

RESUMEN

Di(2-ethylhexyl) phthalate (DEHP) belongs to environmental endocrine disrupting chemicals (EEDCs) and can be rapidly hydrolyzed into the ultimate toxicant mono-2-ethylhexyl phthalate (MEHP). In this study, we used 5-aminofluorescein modified MEHP (MEHP-AF) as a fluorescence tracer to explore the toxicokinetics, including toxicokinetic parameters, absorption and transport across the intestinal mucosal barrier, distribution and pathological changes of organs. While the dose was as lower than 10 mg/kg by intragastric administration, the toxicokinetic parameters obtained by fluorescence microplate method were similar to those with the literatures by chromatography. MEHP-AF can be rapidly absorbed through the intestinal mucosal barrier in rats. In situ organ distribution in mice showed that MEHP-AF was mainly concentrated in the liver, kidney and testis. Our results suggested that the fluorescence tracing technique had the advantages with easy processing, less time-consuming, higher sensitivity for the quantitative determination, In addition, this technology also avoids the interference of exogenous or endogenous DEHP and MEHP in the experimental system. It also can be utilized to the visualization detection of MEHP in situ localization in the absorption organ and the toxic target organ. The results show that this may be a more feasible MEHP toxicological research method.


Asunto(s)
Dietilhexil Ftalato/análogos & derivados , Fluoresceínas/química , Animales , Área Bajo la Curva , Células CACO-2 , Neoplasias Colorrectales , Dietilhexil Ftalato/química , Dietilhexil Ftalato/farmacocinética , Dietilhexil Ftalato/toxicidad , Semivida , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Imagen Óptica , Ratas , Ratas Sprague-Dawley
2.
Mater Sci Eng C Mater Biol Appl ; 124: 112039, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33947539

RESUMEN

In this study, to improve the intestinal absorption of small molecule chemotherapeutic drug docetaxel (DTX) and macromolecular monoclonal antibody drug bevacizumab (BVZ), we designed and prepared a type of co-delivery nanoparticles for the oral administration of DTX and BVZ. Carboxymethyl chitosan (CMC) and poly(lactic-co-glycolic acid) (PLGA) were used as the carrier of DTX nanoparticles (CPNPDTX), and methoxy polyethylene glycol-poly (ß-amino ester) (mPEG-PAE) was used as the carrier of BVZ nanoparticles (PPNPBVZ). Then, the two nanoparticles were physically mixed in mass ratios to form mixed co-delivery nanoparticles, which was named as CPNPDTX&PPNPBVZ. The nanoparticles were characterized with pH-sensitive drug release property. CPNPDTX&PPNPBVZ could significantly increase the bioavailability of DTX and BVZ according to the more cellular uptake in Caco-2 cells and the higher absorption in the intestinal tissue. Compared with free DTX and BVZ, CPNPDTX&PPNPBVZ showed excellent cytotoxic effects on A549 cells. Our study revealed the potential of co-delivery nanoparticles of binary mixture of chemotherapeutic small molecule and macromolecular antibody drug as an oral administration therapeutic system.


Asunto(s)
Antineoplásicos , Nanopartículas , Administración Oral , Antineoplásicos/farmacología , Bevacizumab/farmacología , Células CACO-2 , Docetaxel/farmacología , Portadores de Fármacos , Humanos , Absorción Intestinal
3.
Toxicol Appl Pharmacol ; 414: 115411, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476678

RESUMEN

Di-2-ethylhexyl phosphate (DEHP) and its main toxic metabolite mono-2-ethylhexyl phthalate (MEHP) are the typical endocrine disrupting chemicals (EDCs) and widely affect human health. Our previous research reported that synthetic nonionic dietary emulsifier polysorbate 80 (P80, E433) had the promotional effect on the oral absorption of DEHP in rats. The aim of this study was to explore its mechanism of promoting oral absorption, focusing on the mucus barrier and mucosal barrier of the small intestine. A small molecule fluorescent probe 5-aminofluorescein-MEHP (MEHP-AF) was used as a tracker of MEHP in vivo and in vitro. First of all, we verified that P80 promoted the bioavailability of MEHP-AF in the long-term and low-dose exposure of MEHP-AF with P80 as a result of increasing the intestinal absorption of MEHP-AF. Afterwards, experimental results from Western blot, qPCR, immunohistochemistry, and immunofluorescence showed that P80 decreased the expression of proteins (mucus protein mucin-2, tight junction proteins claudin-1 and occludin) related to mucus barrier and mucosal barrier in the intestine, changed the integrity of intestinal epithelial cell, and increased the permeability of intestinal epithelial mucosa. These results indicated that P80 promoted the oral absorption of MEHP-AF by altering the intestinal mucus barrier and mucosal barrier. These findings are of great importance for assessing the safety risks of some food emulsifiers and clarifying the absorption mechanism of chemical pollutants in food, especially for EDCs.


Asunto(s)
Dietilhexil Ftalato/análogos & derivados , Emulsionantes/toxicidad , Células Epiteliales/efectos de los fármacos , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Polisorbatos/toxicidad , Animales , Disponibilidad Biológica , Células CACO-2 , Claudina-1/metabolismo , Dietilhexil Ftalato/farmacocinética , Dietilhexil Ftalato/toxicidad , Células Epiteliales/metabolismo , Fluoresceínas/metabolismo , Colorantes Fluorescentes/metabolismo , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Masculino , Ratones Endogámicos ICR , Mucina 2/metabolismo , Ocludina/metabolismo , Permeabilidad , Ratas Sprague-Dawley , Distribución Tisular , Toxicocinética
4.
Mater Sci Eng C Mater Biol Appl ; 117: 111370, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32919698

RESUMEN

Although combined chemotherapy had achieved the ideal efficacy in clinical anti-cancer therapeutic, the issues that need to be addressed are non-targeting and toxic-side effects of small molecule chemical drug (SMCD). In this study, we designed and prepared a novel binary blended co-delivered nanoparticles (BBCD NPs) with pH-responsive feature on tumor microenvironment. The BBCD NPs consists of two kind of drug-loaded NPs, in one of which carboxymethyl chitosan (CMC) and Poly (lactic-co-glycolic acid) (PLGA) were chosen as delivery carrier to load anti-cancer drug vincristine (VCR), named CMC-PLGA-VCR NPs (or CPNPVCR); and in the other of which methoxy poly(ethylene glycol)-poly(ß-amino ester) (mPEG-PAE) were chosen as delivery carrier to load anti-fibrotic drug pirfenidone (PFD), named mPEG-PAE-PFD NPs (or PPNPPFD). Then, the two types of NPs (CPNPVCR and PPNPPFD) were physically mixed in mass ratios to form BBCD NPs, which was named CPNPVCR&PPNPPFD. CPNPVCR&PPNPPFD had good encapsulation efficiency and loading capacity, and the particle size distribution was uniform. In cytotoxicity experiments and non-contact co-culture studies in vitro, the model drugs loaded in CPNPVCR&PPNPPFD could respectively target cancer cell and cancer associated fibroblast (CAF) owing to the precise pH-sensitive drug release in the pharmacological targets and show stronger synergism than that of the combined treatment of two free drugs. As a modularity and assemble ability feature in design, BBCD NPs would have the advantages on the terms of concise on preparation process, controllable on quality standard, stable in natural environment storage. The research results can provide scientific evidence for the further development of a novel drug co-delivery system with multi-type cell targets.


Asunto(s)
Nanopartículas , Microambiente Tumoral , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Polietilenglicoles , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
5.
Chem Res Toxicol ; 32(10): 2006-2015, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31469264

RESUMEN

In this study, we synthesized a small molecule fluorescent probe for detecting mono-2-ethylhexyl phthalate (MEHP) named MEHP-AF, which formed by MEHP cross-linked with 5-aminofluorescein (5-AF) through amide bond. MEHP-AF had been purified based on the different physicochemical properties of 5-AF with MEHP. MEHP-AF showed fluorescence characteristics coming from 5-AF and liposoluble property coming from MEHP. After physicochemical characterization, a series of biological studies of its action in cells were carried out. The results indicated that MEHP-AF was a fluorescent probe with strong specificity and high sensitivity. It can visibly track the location of MEHP in HeLa cell or subcellular levels under confocal laser scanning microscopy in situ. This novel fluorescent probe is expected to use for studying its intracellular behavior at the cell level, especially for investigating the interaction between MEHP and cellular molecules.


Asunto(s)
Dietilhexil Ftalato/análogos & derivados , Dietilhexil Ftalato/metabolismo , Dietilhexil Ftalato/análisis , Dietilhexil Ftalato/toxicidad , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Estructura Molecular , Células Tumorales Cultivadas
6.
Nanotechnology ; 30(8): 085101, 2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30523865

RESUMEN

To increase the efficacy of small molecule chemotherapeutic drug (SMCD) and reduce its toxic and side effects, we selected two model drugs doxorubicin (DOX) and chloroquine (CQ). DOX is a SMCD and CQis a chemosensitizer with autophagy inhibition. Poly(lactic-co-glycolic acid) (PLGA) and alpha-tocopherol polyethylene glycol 1000 succinate were chosen as delivery carriers to design and prepare a novel type of drug co-delivery single-nanoparticles by emulsification-solvent volatilisation, named NPDOX+CQ. The physicochemical properties of NPDOX+CQ were characterised. Then A549 cells and A549/Taxol cells were used for the in vitro anti-cancer effect study. At the same time, cellular uptake, intracellular migration and anti-cancer mechanism of nanoparticles were studied. The NPs showed a uniform spherical shape with good dispersibility, and both drugs had good encapsulation efficiency and loading capacity. In all formulations, NPDOX+CQ showed the highest in vitro cytotoxicity. The results showed that NPs could protect drugs from being recognised and excluded by P-glycoprotein (P-gp). Moreover, the results of the mechanistic study demonstrated that NPs were transported by autophagy process after being taken up by the cells. Therefore, during the migration of NPDOX+CQ, CQ could exert its efficacy and block autophagy so that DOX would not be hit by autophagy. Western Blot results showed that NPDOX+CQ had the best inhibition effect of autophagy. It can be concluded that the system can prevent the drug from being recognised and excluded by P-gp, and CQ blocks the process of autophagy so that the DOX is protected and more distributed to the nucleus of multidrug resistance (MDR) cell. The NPDOX+CQ constructed in this study provides a feasible strategy for reversing MDR in tumour cells.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Cloroquina/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Neoplasias/tratamiento farmacológico , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Cloroquina/farmacocinética , Cloroquina/farmacología , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Nanopartículas/química , Neoplasias/metabolismo , Polietilenglicoles/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , alfa-Tocoferol/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...