Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Integr Neurosci ; 23(6): 119, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38940087

RESUMEN

OBJECTIVES: The majority of neuromyelitis optica spectrum disorders (NMOSD) patients are seropositive for aquaporin-4 (AQP4)-specific antibodies [also named neuromyelitis optica immunoglobulin G antibodies (NMO-IgG)]. Although NMO-IgG can induce pathological changes in the central nervous system (CNS), the immunological changes in the CNS and peripheral tissue remain largely unknown. We investigated whether NMO-IgG binds to tissue expressing AQP4 and induces immunological changes in the peripheral tissue and CNS. METHODS: C57BL/6 female mice were assigned into an NMOSD or control group. Pathological and immunological changes in peripheral tissue and CNS were measured by immunostaining and flow cytometry, respectively. Motor impairment was measured by open-field test. RESULTS: We found that NMO-IgG did bind to astrocyte- and AQP4-expressing peripheral tissue, but induced glial fibrillary acidic protein and AQP4 loss only in the CNS. NMO-IgG induced the activation of microglia and modulated microglia polarization toward the classical (M1) phenotype, but did not affect innate or adaptive immune cells in the peripheral immune system, such as macrophages, neutrophils, Th17/Th1, or IL-10-producing B cells. In addition, NMOSD mice showed significantly less total distance traveled and higher immobility time in the open field. CONCLUSIONS: We found that injection of human NMO-IgG led to astrocytopathic lesions with microglial activation in the CNS. However, there were no significant pathological or immunological changes in the peripheral tissues.


Asunto(s)
Acuaporina 4 , Inmunoglobulina G , Ratones Endogámicos C57BL , Neuromielitis Óptica , Animales , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/patología , Acuaporina 4/inmunología , Femenino , Humanos , Ratones , Modelos Animales de Enfermedad , Microglía/metabolismo , Microglía/inmunología , Microglía/efectos de los fármacos , Autoanticuerpos/inmunología , Astrocitos/inmunología , Astrocitos/metabolismo , Astrocitos/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/inmunología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología
2.
Dalton Trans ; 53(24): 10178-10188, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38819237

RESUMEN

In this report, we successfully synthesized a novel trivalent europium (Eu3+)-activated Ca4Nb2O9 phosphor emitting reddish-orange light via its 5D0 → 7F1 and 5D0 → 7F2 transitions. In the Ca4Nb2O9 host, Eu3+ ions exhibited optimal doping at a concentration of 15 mol%, with the concentration-quenching mechanism predominantly driven by electric dipole-dipole interactions. In addition, the Ca4Nb2O9:Eu3+ phosphor exhibited excellent thermal stability with a photoluminescence (PL) intensity of 71.6% at a working temperature of 423 K. Interestingly, the internal PL quantum yield (PLQY) of the optimal sample was obtained to be 87.43%, and the external PLQY was determined to be 47.81%. The fabricated white light-emitting diode that employed this optimized phosphor alongside commercial phosphors, via a novel silica epoxy gel (parts A and B)-based method, exhibited good color rendering index (color rendering index = 80.65), excellent warm-correlated color temperature (correlated color temperature = 3753 K), and Commission International de l'Eclairage chromaticity coordinate (0.3922, 0.3845). Moreover, the optimal phosphor was introduced into the polyvinyl alcohol (PVA) polymer film, creating a translucent film. These films were then fabricated on glass, plastic, and card, which showed a satisfying emission under ultraviolet radiation. Consequently, the proposed Eu3+-activated Ca4Nb2O9 phosphors can be used as light sources and the Ca4Nb2O9:Eu3+-PVA film is proposed for anti-counterfeiting applications.

3.
CNS Neurosci Ther ; 30(5): e14736, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739106

RESUMEN

AIMS: Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease. Microglia are reportedly involved in the pathogenesis of MS. However, the key molecules that control the inflammatory activity of microglia in MS have not been identified. METHODS: Experimental autoimmune encephalomyelitis (EAE) mice were randomized into CD22 blockade and control groups. The expression levels of microglial CD22 were measured by flow cytometry, qRT-PCR, and immunofluorescence. The effects of CD22 blockade were examined via in vitro and in vivo studies. RESULTS: We detected increased expression of microglial CD22 in EAE mice. In addition, an in vitro study revealed that lipopolysaccharide upregulated the expression of CD22 in microglia and that CD22 blockade modulated microglial polarization. Moreover, an in vivo study demonstrated that CD22 blockade aggravated EAE in mice and promoted microglial M1 polarization. CONCLUSION: Collectively, our study indicates that CD22 may be protective against EAE and may play a critical role in the maintenance of immune homeostasis in EAE mice.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Microglía , Lectina 2 Similar a Ig de Unión al Ácido Siálico , Animales , Femenino , Ratones , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Células Cultivadas , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Lipopolisacáridos/farmacología , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidad , Glicoproteína Mielina-Oligodendrócito/inmunología
4.
Infection ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761325

RESUMEN

PURPOSE: Coronavirus disease 2019 (COVID-19) and non-COVID-19 community-acquired pneumonia (NC-CAP) often result in hospitalization with considerable risks of mortality, ICU treatment, and long-term morbidity. A comparative analysis of clinical outcomes in COVID-19 CAP (C-CAP) and NC-CAP may improve clinical management. METHODS: Using prospectively collected CAPNETZ study data (January 2017 to June 2021, 35 study centers), we conducted a comprehensive analysis of clinical outcomes including in-hospital death, ICU treatment, length of hospital stay (LOHS), 180-day survival, and post-discharge re-hospitalization rate. Logistic regression models were used to examine group differences between C-CAP and NC-CAP patients and associations with patient demography, recruitment period, comorbidity, and treatment. RESULTS: Among 1368 patients (C-CAP: n = 344; NC-CAP: n = 1024), C-CAP showed elevated adjusted probabilities for in-hospital death (aOR 4.48 [95% CI 2.38-8.53]) and ICU treatment (aOR 8.08 [95% CI 5.31-12.52]) compared to NC-CAP. C-CAP patients were at increased risk of LOHS over seven days (aOR 1.88 [95% CI 1.47-2.42]). Although ICU patients had similar in-hospital mortality risk, C-CAP was associated with length of ICU stay over seven days (aOR 3.59 [95% CI 1.65-8.38]). Recruitment period influenced outcomes in C-CAP but not in NC-CAP. During follow-up, C-CAP was linked to a reduced risk of re-hospitalization and mortality post-discharge (aOR 0.43 [95% CI 0.27-0.70]). CONCLUSION: Distinct clinical trajectories of C-CAP and NC-CAP underscore the need for adapted management to avoid acute and long-term morbidity and mortality amid the evolving landscape of CAP pathogens.

5.
Int Immunopharmacol ; 131: 111831, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38489969

RESUMEN

BACKGROUND: Fibrin(ogen) deposition in the central nervous system (CNS) contributes to neuropathological injury; however, its role in ischemic stroke is unknown. In this study, we identified fibrinogen as a novel proinflammatory regulator of post-stroke neuroinflammation and revealed the neuro-protection effect of fibrin-derived γ377-395peptide in stroke. METHODS: Fibrinogen depletion and fibrinogen-derived γ377-395peptide treatment were performed 2 h after establishing a permanent middle cerebral artery occlusion (pMCAO) model. The infarction volume, neurological score, fibrin(ogen) deposition, and inflammatory response were evaluated 24 h after occlusion. Both in vivo and in vitro studies were conducted to assess the therapeutic potential of the γ377-395peptide in blocking the interactions between fibrin(ogen) and neutrophils. RESULTS: Fibrin(ogen) deposited in the infarct core promoted post-stroke inflammation and exacerbated neurological deficits in the acute phase after stroke onset. Reducing fibrinogen deposition resulted in a decrease in infarction volume, improved neurological scores, and reduced inflammation in the brain. Additionally, the presence of neutrophil accumulation near fibrin(ogen) deposits was observed in ischemic lesions, and the engagement of fibrin(ogen) by integrin receptor αMß2 promoted neutrophil activation and post-stroke inflammation. Finally, inhibiting fibrin(ogen)-mediated neutrophil activation using a fibrinogen-derived γ377-395peptide significantly attenuated neurological deficits. CONCLUSIONS: Fibrin(ogen) is a crucial regulator of post-stroke inflammation and contributes to secondary brain injury. The inflammation induced by fibrin(ogen) is primarily driven by neutrophils during acute ischemic stroke and can be ameliorated using the fibrin-derived γ377-395peptide. Targeting the fibrin(ogen)-mediated neuropathological process represents a promising approach for neuroprotective therapy after stroke while preserving its beneficial coagulation function.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Enfermedades Neuroinflamatorias , Inflamación/tratamiento farmacológico , Inflamación/patología , Fibrinógeno , Péptidos , Fibrina , Accidente Cerebrovascular/tratamiento farmacológico , Infarto
6.
Antonie Van Leeuwenhoek ; 117(1): 54, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489110

RESUMEN

Translation elongation factor P, expressed by the efp gene, is a conserved protein closely related to bacterial virulence and environmental stress regulation responses, however, little is known about the efp gene expression regulations. Here, the strain of Staphylococcus aureus subsp. aureus NCTC 8325 was taken as the research object and cultured under different conditions, including different culture temperatures, pH, and antibiotics, to study the expression of the efp gene in S. aureus by qRT-PCR, the results showed that the expression of the efp gene is upregulated under high temperature (40 °C), acidic (pH 5.4) or alkaline (pH 9.4) culture conditions, but upregulated early and downregulated later under the conditions of 0.5 MIC antibiotics (chloramphenicol at the final concentration of 2 µg/mL and vancomycin at the final concentration of 0.25 µg/mL), indicating that the efp promoter in S. aureus is inducible. The efp promoter sequence and structure in S. aureus were predicted by bioinformatics methods, and the predicted promoter was validated by constructing a promoter-probe vector and a series of promoter mutants, the results showed that the efp promoter sequence in S. aureus, named Pro, located in 1,548,179-1,548,250 of the S. aureus genome (NC_007795.1), and the sequence of - 10 element is CCTTATAGT, - 35 element is TTTACT. The results above could lay a foundation for screening transcription factors involved in the expression of the efp gene and then exploring the transcriptional regulation mechanism of EF-P in S. aureus.


Asunto(s)
Factores de Elongación de Péptidos , Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Proteínas Bacterianas/metabolismo , Factores de Transcripción/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Regulación Bacteriana de la Expresión Génica
7.
J Inflamm Res ; 17: 909-917, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370469

RESUMEN

Background: Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune demyelinating disease of the central nervous system. However, few biomarkers have been found to predict the outcome of immunotherapy. We investigated the relationship between the serum albumin (S-Alb) and response to immunotherapy in acute NMOSD patients. Methods: A total of 107 consecutive Chinese patients with acute NMOSD diagnosed between January 2013 and January 2022 were included in our prospective observational study. S-Alb was measured by the use of bromocresol green and immunoturbidimetric methods on admission. The immunotherapy response was assessed by the percentage change in the expanded disability status scale (EDSS) score from admission to discharge after treatment. We evaluated the association between S-Alb and immunotherapy response through multivariate logistic regression analysis. Results: S-Alb levels were significantly lower in patients who were resistant to immunotherapy than in those who were responsive to treatment (p<0.001). S-Alb levels were positively related to a favorable response to immunotherapy (r=0.386, p<0.001). The odds ratio (95% CI) for the association between S-Alb level and response to immunotherapy was 1.27 (95% CI=1.08, 1.50; p=0.004) after adjusting for potential factors. ROC analysis showed that patients with S-Alb levels lower than 40.85 g/L were likely to be resistant to immunotherapy. Conclusion: Our study indicated that a higher S-Alb was an independent indicator of response to immunotherapy in acute NMOSD patients.

8.
BMC Neurol ; 23(1): 449, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124042

RESUMEN

BACKGROUNDS: Thrombosis of dural sinuses and/or cerebral veins (CVT) is an uncommon form of cerebrovascular disease. Malnutrition is common in patients with cerebrovascular disease, and early assessment of malnutrition and individualized nutritional treatment have been reported to improve functional outcomes of these patients. As for CVT patients, little is known about whether these patients would suffer from malnutrition. Also, the correlation between malnutrition and cerebral intraparenchymal damage (CID) in CVT patients was rarely studied. METHODS: Patients with CVT were retrospectively included in this observational study. Multivariate logistic regressions were used to investigate the effects of nutritional indexes on the risk of CID. Subsequently, we used the independent risk factors to construct the nomogram model, and the consistency index (C-index), calibration curve and decision curve analysis (DCA) to assess the reliability and applicability of the model. RESULTS: A total of 165 patients were included in the final analysis. Approximately 72.7% of CVT patients were regarded as malnourished by our malnutrition screening tools, and malnutrition is associated with an increased risk of CID. Prognostic Nutritional Index (PNI) (OR = 0.873; CI: 0.791, 0.963, p = 0.007) remained as an independent predictor for CID after adjustment for other risk factors. The nomogram model showed that PNI and gender have a great contribution to prediction. Besides, the nomogram model was consistent with the actual observations of CID risk (C-index = 0.65) and was of clinical significance. CONCLUSIONS: We reported that malnutrition, as indicated by PNI, was associated with a higher incidence of CID in CVT patients. Also, we have constructed a nomogram for predicting the risk of CID in these patients.


Asunto(s)
Venas Cerebrales , Trombosis Intracraneal , Desnutrición , Trombosis , Humanos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Trombosis/complicaciones , Desnutrición/complicaciones , Desnutrición/epidemiología , Trombosis Intracraneal/complicaciones
9.
Sci Adv ; 9(21): eade7280, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235659

RESUMEN

Mechanisms underlying arteriovenous malformations (AVMs) are poorly understood. Using mice with endothelial cell (EC) expression of constitutively active Notch4 (Notch4*EC), we show decreased arteriolar tone in vivo during brain AVM initiation. Reduced vascular tone is a primary effect of Notch4*EC, as isolated pial arteries from asymptomatic mice exhibited reduced pressure-induced arterial tone ex vivo. The nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-l-arginine (L-NNA) corrected vascular tone defects in both assays. L-NNA treatment or endothelial NOS (eNOS) gene deletion, either globally or specifically in ECs, attenuated AVM initiation, assessed by decreased AVM diameter and delayed time to moribund. Administering nitroxide antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl also attenuated AVM initiation. Increased NOS-dependent production of hydrogen peroxide, but not NO, superoxide, or peroxynitrite was detected in isolated Notch4*EC brain vessels during AVM initiation. Our data suggest that eNOS is involved in Notch4*EC-mediated AVM formation by up-regulating hydrogen peroxide and reducing vascular tone, thereby permitting AVM initiation and progression.


Asunto(s)
Malformaciones Arteriovenosas , Peróxido de Hidrógeno , Óxido Nítrico Sintasa de Tipo III , Animales , Ratones , Arterias/metabolismo , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Nitroarginina/farmacología
10.
Nucl Med Biol ; 118-119: 108336, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37028196

RESUMEN

Microglia constantly survey the central nervous system microenvironment and maintain brain homeostasis. Microglia activation, polarization and inflammatory response are of great importance in the pathophysiology of ischemic stroke. For exploring biochemical processes in vivo, positron emission tomography (PET) is a superior imaging tool. Translocator protein 18 kDa (TSPO), is a validated neuroinflammatory biomarker which is widely used to evaluate various central nervous system (CNS) pathologies in both preclinical and clinical studies. TSPO level can be elevated due to peripheral inflammatory cells infiltration and glial cells activation. Therefore, a clear understanding of the dynamic changes between microglia and TSPO is critical for interpreting PET studies and understanding the pathophysiology after ischemic stroke. Our review discusses alternative biological targets that have attracted considerable interest for the imaging of microglia activation in recent years, and the potential value of imaging of microglia in the assessment of stroke therapies.


Asunto(s)
Accidente Cerebrovascular Isquémico , Receptores de GABA , Humanos , Receptores de GABA/metabolismo , Microglía/metabolismo , Encéfalo/metabolismo , Inflamación/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología
11.
Free Radic Biol Med ; 193(Pt 1): 447-458, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36328351

RESUMEN

The gastrointestinal tract is the main target of cadmium toxicity. However, whether Akkermansia muciniphila (A. muciniphila), which has been reported to be the next generation of promising probiotics, can alleviate cadmium-induced intestinal damage has not been investigated. In this study, we found that compared to the cadmium exposure group, mice gavaged with A. muciniphila showed less severe intestinal mucosal damage, with improved bodyweight, colon length, a decline in inflammation, and significantly increased glutathione and goblet cell numbers. Meanwhile, melatonin was interestingly found to be strikingly increased after A. muciniphila treatment. We then demonstrated that melatonin also could ameliorate the intestinal mucosal damage caused by cadmium through scavenging reactive oxygen species (ROS) and increasing the number of goblet cells. Furthermore, mice treated with inhibitors had a low level of melatonin and could not reproduce the beneficial effects of the A. muciniphila. Our results implied that the regulation of melatonin production by A. muciniphila is associated with an increase in enterochromaffin cells number, which determine melatonin secretion. This study indicated that the A. muciniphila-melatonin axis reduces cadmium-induced damage by increasing the goblet cells and scavenging the ROS, which may guide the prevention of the toxic effects of heavy metals.


Asunto(s)
Melatonina , Ratones , Animales , Especies Reactivas de Oxígeno/farmacología , Melatonina/farmacología , Cadmio/toxicidad , Verrucomicrobia/fisiología
12.
Respir Med ; 202: 106968, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36081267

RESUMEN

BACKGROUND: Cardiopulmonary Exercise Testing (CPET) provides a comprehensive assessment of pulmonary, cardiovascular and musculosceletal function. Reduced CPET performance could be an indicator for chronic morbidity after COVID-19. METHODS: Patients ≥18 years with confirmed PCR positive SARS-CoV-2 infection were offered to participate in a prospective observational study of clinical course and outcomes of COVID-19. 54 patients completed CPET, questionnaires on respiratory quality of life and performed pulmonary function tests 12 months after SARS-CoV-2 infection. RESULTS: At 12 months after SARS-CoV-2 infection, 46.3% of participants had a peak performance and 33.3% a peak oxygen uptake of <80% of the predicted values, respectively. Further impairments were observed in diffusion capacity and ventilatory efficiency. Functional limitations were particularly pronounced in patients after invasive mechanical ventilation and extracorporeal membrane oxygenation treatment. Ventilatory capacity was reduced <80% of predicted values in 55.6% of participants, independent from initial clinical severity. Patient reported dyspnea and respiratory quality of life after COVID-19 correlated with CPET performance and parameters of gas exchange. Risk factors for reduced CPET performance 12 months after COVID-19 were prior intensive care treatment (OR 5.58, p = 0.004), SGRQ outcome >25 points (OR 3.48, p = 0.03) and reduced DLCO (OR 3.01, p = 0.054). CONCLUSIONS: Functional limitations causing chronic morbidity in COVID-19 survivors persist over 12 months after SARS-CoV-2 infection. These limitations were particularly seen in parameters of overall performance and gas exchange resulting from muscular deconditioning and lung parenchymal changes. Patient reported reduced respiratory quality of life was a risk factor for adverse CPET performance.


Asunto(s)
COVID-19 , Prueba de Esfuerzo , COVID-19/diagnóstico , Prueba de Esfuerzo/métodos , Tolerancia al Ejercicio , Humanos , Oxígeno , Calidad de Vida , SARS-CoV-2 , Índice de Severidad de la Enfermedad
13.
J Clin Lab Anal ; 36(5): e24353, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35312120

RESUMEN

BACKGROUND: We explored the therapeutic effects of Adipose-derived mesenchymal stem cells (ADMSCs) and Synovial-derived mesenchymal stem cells (SDMSCs) on osteoarthritis (OA). METHODS: SDMSCs and ADMSCs were co-cultured with chondrocytes and stimulated with interleukin (IL)-1ß. An OA model was established on rats by intra-articular injection with ADMSCs and SDMSCs. After 8 weeks, the joint diameter difference was detected, and histological staining was used to observe the pathological changes in cartilage tissue. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expressions of IL-6, tumor necrosis factor (TNF)-α and IL-1ß in joint fluid. The expressions of COL2A1, Aggrecan, Matrix metalloproteinase (MMP)-13, SOX9, IL-6, TNF-α and IL-1ß were detected by qRT-PCR and Western blotting in cartilage tissue. Reactive oxygen species (ROS) content in cells and cartilage tissues was detected by ROS kit. RESULTS: SDMSCs and ADMSCs co-cultured with chondrocytes could reduce MMP-13 expression, increase the expressions of COL2A1, Aggrecan and SOX9, as well as reverse the effects of IL-1ß on promoting ROS content and inflammatory factors levels. After the OA model was established, the injection of ADMSCs and SDMSCs reduced the differences in joint diameter and tissue lesions in OA rats. The OA model led to increased levels of IL-6, TNF-α and IL-1ß in joint fluid and cartilage tissue, while the injection of ADMSCs and SDMSCs inhibited the inflammatory factor levels in OA rats, and increased the expressions of COL2A1, Aggrecan and SOX9 in OA rats. CONCLUSION: ADMSCs and SDMSCs improve osteoarthritis in rats by reducing chondrocyte ROS and inhibiting inflammatory response.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Agrecanos/genética , Agrecanos/metabolismo , Agrecanos/farmacología , Animales , Condrocitos , Humanos , Interleucina-6/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/terapia , Ratas , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Especies Reactivas de Oxígeno/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
15.
Front Immunol ; 12: 727750, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721390

RESUMEN

Neuromyelitis optica spectrum disorder (NMOSD), a relapsing autoimmune disease of the central nervous system, mainly targets the optic nerve and spinal cord. To date, all attempts at the establishment of NMOSD animal models have been based on neuromyelitis optica immunoglobulin G antibody (NMO-IgG) and mimic the disease in part. To solve this problem, we developed a rodent model by opening the blood-brain barrier (BBB) with low frequency ultrasound, followed by injection of NMO-IgG from NMOSD patients and complement to mice suffering pre-existing neuroinflammation produced by experimental autoimmune encephalomyelitis (EAE). In this study, we showed that ultrasound with NMO-IgG and complement caused marked inflammation and demyelination of both spinal cords and optic nerves compared to blank control group, as well as glial fibrillary acidic protein (GFAP) and aquaporin-4 (AQP4) loss of spinal cords and optic nerves compared to EAE mice and EAE mice with only BBB opening. In addition, magnetic resonance imaging (MRI) revealed optic neuritis with spinal cord lesions. We further demonstrated eye segregation defects in the dorsal lateral geniculate nucleus (dLGN) of these NMOSD mice.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Inmunoglobulina G/inmunología , Neuromielitis Óptica/inmunología , Animales , Acuaporina 4/metabolismo , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Neuromielitis Óptica/diagnóstico por imagen , Neuromielitis Óptica/metabolismo , Nervio Óptico/diagnóstico por imagen , Nervio Óptico/inmunología , Nervio Óptico/metabolismo , Médula Espinal/diagnóstico por imagen , Médula Espinal/inmunología , Médula Espinal/metabolismo , Ondas Ultrasónicas
16.
Cell Death Dis ; 12(10): 907, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611127

RESUMEN

Cholesterols are the main components of myelin, and are mainly synthesized in astrocytes and transported to oligodendrocytes and neurons in the adult brain. It has been reported that Hippo/yes-associated protein (YAP) pathways are involved in cholesterol synthesis in the liver, however, it remains unknown whether YAP signaling can prevent the demyelination through promoting cholesterol synthesis in experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of multiple sclerosis characterized by neuroinflammation and demyelination. Here, we found that YAP was upregulated and activated in astrocytes of spinal cords of EAE mice through suppression of the Hippo pathway. YAP deletion in astrocytes aggravated EAE with earlier onset, severer inflammatory infiltration, demyelination, and more loss of neurons. Furthermore, we found that the neuroinflammation was aggravated and the proliferation of astrocytes was decreased in YAPGFAP-CKO EAE mice. Mechanically, RNA-seq revealed that the expression of cholesterol-synthesis pathway genes such as HMGCS1 were decreased in YAP-/- astrocytes. qPCR, western blot, and immunostaining further confirmed the more significant reduction of HMGCS1 in spinal cord astrocytes of YAPGFAP-CKO EAE mice. Interestingly, upregulation of cholesterol-synthesis pathways by diarylpropionitrile (DPN) (an ERß-ligand, to upregulate the expression of HMGCS1) treatment partially rescued the demyelination deficits in YAPGFAP-CKO EAE mice. Finally, activation of YAP by XMU-MP-1 treatment promoted the expression of HMGCS1 in astrocytes and partially rescued the demyelination and inflammatory infiltration deficits in EAE mice. These findings identify unrecognized functions of astrocytic YAP in the prevention of demyelination through promoting cholesterol synthesis in EAE, and reveal a novel pathway of YAP/HMGCS1 for cholesterol synthesis in EAE pathology.


Asunto(s)
Astrocitos/metabolismo , Colesterol/biosíntesis , Enfermedades Desmielinizantes/genética , Encefalomielitis Autoinmune Experimental/genética , Regulación de la Expresión Génica , Animales , Astrocitos/patología , Peso Corporal , Proliferación Celular , Regulación hacia Abajo/genética , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Vía de Señalización Hippo , Inflamación/patología , Ratones Noqueados , Modelos Biológicos , Neuronas/metabolismo , Neuronas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recuperación de la Función , Médula Espinal/patología , Médula Espinal/ultraestructura , Regulación hacia Arriba/genética , Proteínas Señalizadoras YAP/deficiencia , Proteínas Señalizadoras YAP/metabolismo
17.
J Transl Med ; 19(1): 223, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039371

RESUMEN

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is a model for inflammatory demyelinating diseases of the central nervous system (CNS), a group of autoimmune diseases characterized by inflammatory infiltration, demyelination, and axonal damage. miR-20a is dysregulated in patients with CNS inflammatory demyelinating diseases; however, the function of miR-20a remains unclear. In this study, we intended to explore the role of miR-20a in EAE. METHODS: The expression of miR-20a was detected by quantitative real-time PCR (qRT-PCR) in EAE mice and patients with MOG antibody-associated demyelinating diseases. CD4+ T cells of EAE mice were sorted, stimulated, and polarized with miR-20a knockdown. Activation and differentiation of CD4+ T cells were analyzed by flow cytometry. The expression of target gene Map3k9 was detected by qRT-PCR and western blot experiments. The binding of miR-20a to the 3' UTR of Map3k9 was tested by luciferase assays. The feasibility of miR-20a as a therapeutic target to alleviate the severity of EAE was explored by intravenous administration of miR-20a antagomirs to EAE mice. RESULTS: miR-20a was upregulated in splenocytes and lymph node cells, CD4+ T cells, and spinal cords of EAE mice. Moreover, miR-20a knockdown did not influence the activation of antigen-specific CD4+ T cells but promoted their differentiation into Treg cells. Map3k9 was predicted to be a target gene of miR-20a. The expressions of Map3k9 and miR-20a were negatively correlated, and miR-20a knockdown increased the expression of Map3k9. In addition, miR-20a binded to the 3' UTR of Map3k9, and simultaneous knockdown of miR-20a and Map3k9 counteracted the enhanced differentiation of Tregs observed when miR-20a was knocked down alone. Furthermore, injection of miR-20a antagomirs to EAE mice reduced the severity of the disease and increased the proportion of Treg cells in peripheral immune organs. CONCLUSIONS: miR-20a suppresses the differentiation of antigen-specific CD4+ T cells into Tregs in EAE by decreasing the expression of Map3k9. miR-20a antagomirs alleviate EAE, suggesting a new therapy for EAE and CNS inflammatory demyelinating diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , MicroARNs , Animales , Diferenciación Celular , Encefalomielitis Autoinmune Experimental/genética , Humanos , Quinasas Quinasa Quinasa PAM , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Linfocitos T Reguladores
18.
J Neuroimmunol ; 354: 577520, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33684831

RESUMEN

Regulatory B cells are a rare B-cell subset widely known to exert their immunosuppressive function via the production of interleukin-10 (IL-10) and other mechanisms. B10 cells are a special subset of regulatory B cells with immunoregulatory function that is fully attributed to IL-10. Their unique roles in the animal model of multiple sclerosis (MS) have been described, as well as their relevance in MS patients. This review specifically focuses on the identification and development of B10 cells, the signals that promote IL-10 production in B cells, the roles of B10 cells in MS, and the potential and major challenges of the application of B10-based therapies for MS.


Asunto(s)
Linfocitos B Reguladores/inmunología , Interleucina-10/inmunología , Esclerosis Múltiple/inmunología , Animales , Humanos , Inmunoterapia/métodos
19.
Epigenomics ; 13(1): 47-63, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33336585

RESUMEN

Aim: To establish a signature based on hypoxia-related alternative splicing (AS) events for lung adenocarcinoma. Materials & methods: The least absolute shrinkage and selection operator Cox approach was used to construct a prognostic model. A nomogram that integrates the final AS predictor and stage was created. The network of the key AS events and splicing factors was created. Results: We created a prognostic signature of 11 AS events. Moreover, a nomogram that constitutes the pathological stage and risk was exhibited to be greatly effective in estimating the survival likelihood of lung adenocarcinoma patients. Conclusion: Herein we developed the first-ever signature based on hypoxia-related AS events with both prognostic predictive power and diagnostic efficacy.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Empalme Alternativo , Hipoxia/complicaciones , Neoplasias Pulmonares/genética , Adenocarcinoma del Pulmón/patología , Humanos , Neoplasias Pulmonares/patología , Nomogramas , Pronóstico
20.
PeerJ ; 8: e9530, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32775050

RESUMEN

BACKGROUND: Prognostic genes in the tumor microenvironment play an important role in immune biological processes and the response of cancer to immunotherapy. Thus, we aimed to assess new biomarkers that are associated with immune/stromal cells in lung adenocarcinomas (LUAD) using the ESTIMATE algorithm, which also significantly affects the prognosis of cancer. METHODS: The RNA sequencing (RNA-Seq) and clinical data of LUAD were downloaded from the the Cancer Genome Atlas (TCGA ). The immune and stromal scores were calculated for each sample using the ESTIMATE algorithm. The LUAD gene chip expression profile data and the clinical data (GSE37745, GSE11969, and GSE50081) were downloaded from the Gene Expression Omnibus (GEO) for subsequent validation analysis. Differentially expressed genes were calculated between high and low score groups. Univariate Cox regression analysis was performed on differentially expressed genes (DEGs) between the two groups to obtain initial prognosis genes. These were verified by three independent LUAD cohorts from the GEO database. Multivariate Cox regression was used to identify overall survival-related DEGs. UALCAN and the Human Protein Atlas were used to analyze the mRNA /protein expression levels of the target genes. Immune cell infiltration was evaluated using the Tumor Immune Estimation Resource (TIMER) and CIBERSORT methods, and stromal cell infiltration was assessed using xCell. RESULTS: In this study, immune scores and stromal scores are significantly associated with the clinical characteristics of LUAD, including T stage, M stage, pathological stage, and overall survival time. 530 DEGs (18 upregulated and 512 downregulated) were found to coexist in the difference analysis with the immune scores and stromal scores subgroup. Univariate Cox regression analysis showed that 286 of the 530 DEGs were survival-related genes (p < 0.05). Of the 286 genes initially identified, nine prognosis-related genes (CSF2RB, ITK, FLT3, CD79A, CCR4, CCR6, DOK2, AMPD1, and IGJ) were validated from three separate LUAD cohorts. In addition, functional analysis of DEGs also showed that various immunoregulatory molecular pathways, including regulation of immune response and the chemokine signaling pathways, were involved. Five genes (CCR6, ITK, CCR4, DOK2, and AMPD1) were identified as independent prognostic indicators of LUAD in specific data sets. The relationship between the expression levels of these genes and immune genes was assessed. We found that CCR6 mRNA and protein expression levels of LUAD were greater than in normal tissues. We evaluated the infiltration of immune cells and stromal cells in groups with high and low levels of expression of CCR6 in the TCGA LUAD cohort. In summary, we found a series of prognosis-related genes that were associated with the LUAD tumor microenvironment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA