Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 257: 121693, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38728785

RESUMEN

Cyanobacterial harmful algal blooms (cyanoHABs) are becoming increasingly common in aquatic ecosystems worldwide. However, their heterogeneous distributions make it difficult to accurately estimate the total algae biomass and forecast the occurrence of surface cyanoHABs by using traditional monitoring methods. Although various optical instruments and remote sensing methods have been employed to monitor the dynamics of cyanoHABs at the water surface (i.e., bloom area, chlorophyll a), there is no effective in-situ methodology to monitor the dynamic change of cell density and integrated biovolume of algae throughout the water column. In this study, we propose a quantitative protocol for simultaneously measurements of multiple indicators (i.e., biovolume concentration, size distribution, cell density, and column-integrated biovolume) of cyanoHABs in water bodies by using the laser in-situ scattering and transmissometry (LISST) instrument. The accuracy of measurements of the biovolume and colony size of algae was evaluated and exceeded 95% when the water bloom was dominated by cyanobacteria. Furthermore, the cell density of cyanobacteria was well estimated based on total biovolume and mean cell volume measured by the instrument. Therefore, this methodology has the potential to be used for broader applications, not only to monitor the spatial and temporal distribution of algal biovolume concentration but also monitor the vertical distribution of cell density, biomass and their relationship with size distribution patterns. This provides new technical means for the monitoring and analysis of algae migration and early warning of the formation of cyanoHABs in lakes and reservoirs.

2.
Front Plant Sci ; 15: 1367680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633455

RESUMEN

Increasing occurrences of Microcystis surface scum have been observed in the context of global climate change and the increase in anthropogenic pollution, causing deteriorating water quality in aquatic ecosystems. Previous studies on scum formation mainly focus on the buoyancy-driven floating process of larger Microcystis colonies, neglecting other potential mechanisms. To study the non-buoyancy-driven rapid flotation of Microcystis, we here investigate the floating processes of two strains of single-cell species (Microcystis aeruginosa and Microcystis wesenbergii), which are typically buoyant, under light conditions (150 µmol photons s-1 m-2). Our results showed that M. wesenbergii exhibited fast upward migration and formed surface scum within 4 hours, while M. aeruginosa did not form visible scum throughout the experiments. To further explore the underlying mechanism of these processes, we compared the dissolved oxygen (DO), extracellular polymeric substance (EPS) content, and colony size of Microcystis in different treatments. We found supersaturated DO and the formation of micro-bubbles (50-200 µm in diameter) in M. wesenbergii treatments. M. aeruginosa produces bubbles in small quantities and small sizes. Additionally, M. wesenbergii produced more EPS and tended to aggregate into larger colonies. M. wesenbergii had much more derived-soluble extracellular proteins and polysaccharides compared to M. aeruginosa. At the same time, M. wesenbergii contains abundant functional groups, which was beneficial to the formation of agglomerates. The surface scum observed in M. wesenbergii is likely due to micro-bubbles attaching to the surface of cell aggregates or becoming trapped within the colony. Our study reveals a species-specific mechanism for the rapid floatation of Microcystis, providing novel insights into surface scum formation as well as succession of cyanobacterial species.

3.
Front Plant Sci ; 15: 1367205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504890

RESUMEN

Surface blooms of colony-forming Microcystis are increasingly occurring in aquatic ecosystems on a global scale. Recent studies have found that the Microcystis colonial morphology is a crucial factor in the occurrence, persistence, and dominance of Microcystis blooms, yet the mechanism driving its morphological dynamics has remained unknown. This study conducted a laboratory experiment to test the effect of extracellular polymeric substances on the morphological dynamics of Microcystis. Ultrasound was used to disaggregate colonies, isolating the cells and of the Microcystis suspension. The single cells were then re-cultured under three homologous EPS concentrations: group CK, group Low, and group High. The size, morphology, and EPS [including tightly bound EPS (TB-EPS), loosely bound EPS (LB-EPS), bound polysaccharides (B-polysaccharides), and bound proteins (B-proteins)] changes of colonies were closely monitored over a period of 2 months. It was observed that colonies were rapidly formed in group CK, with median colony size (D50) reaching 183 µm on day 12. The proportion of colonies with a size of 150-500 µm increased from 1% to more than 50%. Colony formation was also observed in both groups Low and High, but their D50 increased at a slower rate and remained around 130 µm after day 17. Colonies with a size of 50-150 µm account for more than 50%. Groups CK and Low successively recovered the initial Microcystis morphology, which is a ring structure formed of several small colonies with a D50 of 130 µm. During the recovery of the colony morphology, the EPS per cell increased and then decreased, with TB-EPS and B-polysaccharides constituting the primary components. The results suggest that colony formation transitioned from adhesion driven to being division driven over time. It is suggested that the homologous EPS released into the ambient environment due to the disaggregation of the colony is a chemical cue that can affect the formation of a colony. This plays an important but largely ignored role in the dynamics of Microcystis and surface blooms.

4.
Chemosphere ; 352: 141467, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387667

RESUMEN

The increasing concern for environmental remediation has led to a search for effective methods to remove eutrophic nutrients. In this study, Methylobacterium gregans DC-1 was utilized to improve nitrogen removal in a sequencing batch biofilm reactor (SBBR) via aerobic denitrification. This bacterium has the extraordinary characteristics of strong auto-aggregation and a high ability to remove nitrogen efficiently, making it an ideal candidate for enhanced treatment of nitrogen-rich wastewater. This strain was used for the bioassessment of a test reactor (SBBRbio), which showed a shorter biofilm formation time compared to a control reactor (SBBRcon) without this strain inoculation. Moreover, the enhanced biofilm was enriched in TB-EPS and had a wider variety of protein secondary structures than SBBRcon. During the stabilization phase of SBBRbio, the EPS molecules showed the highest proportion of intermolecular hydrogen bonding. It is possible that bioaugmentation with this strain positively affects the structural stability of biofilm. At influent ammonia loadings of 100 and 150 mg. L-1, the average reduction of ammonia and nitrate-nitrogen was higher in the experimental system compared to the control system. Additionally, nitrite-N accumulation was lower and N2O production decreased compared to the control. Analysis of the microbial community structure demonstrated successful colonization in the bioreactor by a highly nitrogen-tolerant strain that efficiently removed inorganic nitrogen. These results illustrate the great potential of this type of denitrifying bacteria in the application of bioaugmentation systems.


Asunto(s)
Methylobacterium , Purificación del Agua , Desnitrificación , Amoníaco , Nitrógeno , Biopelículas , Reactores Biológicos/microbiología , Nitrificación
5.
Environ Sci Pollut Res Int ; 30(56): 118916-118927, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919509

RESUMEN

Microcystis colonies have the ability to persist for extended periods in sediment and function as a "seed bank" for the succeeding summer bloom in water column. The colonial morphology and toxin production ability of Microcystis are important for their population maintenance and life history. However, it is unclear about the influence of the colony morphology and toxic potential of Microcystis colonies on their benthic process. To address this question, we classified field Microcystis samples into three groups based on their size (< 150 µm, 150-300 µm, and > 300 µm) and compared their survivability and toxic potential during culturing in sediment. The results showed that Microcystis colonies in sediments disappeared quickly at 25℃ but survived for long periods at 5℃. The survivability of smaller Microcystis colonies (< 300 µm) was significantly higher than that of larger ones (> 300 µm). The activities of catalase (CAT) were significantly increased in large colonies compared to small colonies at 15℃ and 25℃. Real-time PCR indicated that smaller colonies had higher proportion of potential toxic genotype, and Microcystis colonies cultured at 15℃ and 25℃ showed higher percentage of microcystin-producing genotype. These results indicate that Microcystis colonies survived longer at low temperature and that larger Microcystis colonies are more susceptible to oxidative stress in sediments. The difference of toxic potential of Microcystis colonies of different sizes in sediments may be related to their survival ability in sediments.


Asunto(s)
Microcystis , Microcystis/metabolismo , Microcistinas/metabolismo , Estrés Oxidativo , Genotipo , Frío , Agua
6.
Bioresour Technol ; 390: 129899, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865151

RESUMEN

An instantaneous and reversible flocculation method for Scenedesmus harvesting was developed, based on the complexation of Chitosan (CTS) and Xanthan Gum (XG). Under rapid stirring, Scenedesmus cells formed centimeter-sized flocs within 20 s using binary flocculants of 4 mg/L CTS and 16 mg/L XG. These flocs exhibited a remarkable harvest efficiency exceeding 95 % when filtered through 500-µm-pore-sized sieves. Furthermore, the flocs could be completely disintegrated by using alkaline or NaCl solutions (pH > 11 or NaCl concentration > 1.5 mol/L). Adjusting pH allowed recovery of 50 % CTS and 75 % XG, resulting in microalgae biomass with lower flocculant content and reducing reagent costs. Electrostatic interaction of -COO- of XG and -NH3+ of CTS deduced the formation of polyelectrolyte complexes (PECs), which shrink and wrap the coexisting algal cells to form the flocs under stirring. CTS and XG complexation was instantaneous and reversible, explaining quick flocculation and disintegration.


Asunto(s)
Quitosano , Microalgas , Scenedesmus , Quitosano/química , Floculación , Cloruro de Sodio , Microalgas/química , Biomasa
7.
Environ Res ; 234: 116591, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423367

RESUMEN

Denitrification is critical for removing nitrate from wastewater, but it typically requires large amounts of organic carbon, which can lead to high operating costs and secondary environmental pollution. To address this issue, this study proposes a novel method to reduce the demand for organic carbon in denitrification. In this study, a new denitrifier, Pseudomonas hunanensis strain PAD-1, was obtained with properties for high efficiency nitrogen removal and trace N2O emission. It was also used to explore the feasibility of pyrite-enhanced denitrification to reduce organic carbon demand. The results showed that pyrite significantly improved the heterotrophic denitrification of strain PAD-1, and optimal addition amount was 0.8-1.6 g/L. The strengthening effect of pyrite was positively correlated with carbon to nitrogen ratio, and it could effectively reduce demand for organic carbon sources and enhance carbon metabolism of strain PAD-1. Meanwhile, the pyrite significantly up-regulated electron transport system activity (ETSA) of strain PAD-1 by 80%, nitrate reductase activity by 16%, Complex III activity by 28%, and napA expression by 5.21 times. Overall, the addition of pyrite presents a new avenue for reducing carbon source demand and improving the nitrate harmless rate in the nitrogen removal process.


Asunto(s)
Desnitrificación , Nitratos , Aerobiosis , Nitrógeno/metabolismo , Carbono , Reactores Biológicos
8.
Water Res ; 235: 119839, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924554

RESUMEN

Light is an important driver of algal growth and for the formation of surface blooms. Long-term buoyancy maintenance of Microcystis colonies is crucial for their aggregation at the water surface and the following algal bloom development. However, the effect of light-mediated variations of colony morphology on the buoyancy regulation of Microcystis colonies remains unclear. In this study, growth parameters, colony morphology and floatation/sinking performance of Microcystis colonies were determined to explore how variations in colony morphology influence the buoyancy of colonies under different light conditions. We quantified colony compactness through the cell volume to colony volume ratio (VR) and found different responses of colony size and VR under different light intensities. Microcystis colonies with higher VR could stay longer at the water surface under low light conditions, which was beneficial for the long-term growth and buoyancy maintenance. However, increased colony size and decreased compactness were observed at a later growth stage under relatively higher light intensity (i.e., >108 µmol photons m-2 s-1). Interestingly, we found a counterintuitive negative correlation between colony size and buoyancy of Microcystis under high light intensity. Additionally, we found that the influence of colony morphology on buoyancy was stronger at high light intensity. These results indicate that light could regulate the buoyancy via colonial morphology and that the role of colony morphology in buoyancy regulation needs to be accounted for in further studies under variable environmental conditions.


Asunto(s)
Microcystis , Microcystis/fisiología , Eutrofización , Agua
9.
Sci Total Environ ; 823: 153624, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35124034

RESUMEN

Microcystins (MCs) are the most widely distributed cyanobacterial toxins that can exert adverse effects on aquatic organisms, but aside from the study of the harmful effect of cyanobacterial blooms, little is known about the effect of released MCs on the growth and development of chironomid larvae. To assess the harmful effect and the toxic mechanism of MCs on midges, the life-history traits, intestinal microbiota, and transcriptome of Chironomus pallidivittatus were analyzed after chronic exposure to 30 µg/L of MC-LR. Exposure inhibited larvae body length by 35.61% and wet weight by 21.92%, increased emergence time of midges, damaged mitochondria in the intestine, promoted oxidative stress, dysregulated lipid metabolism of chironomid larvae, and increased detoxification enzymes glutathione S-transferase (GST) and superoxide dismutase (SOD) by 32.44% and 17.41%, respectively. Exposure also altered the diversity and abundance of the intestinal microbiota, favoring pathogenic and MC degradation bacteria. RNA sequencing identified 261 differentially expressed genes under MC-LR stress, suggesting that impairment of the peroxisome proliferator-activated receptor signaling pathway upregulated fatty acid biosynthesis and elongation to promote lipid accumulation. In addition, exposure-induced detoxification and antioxidant responses, indicating that the chironomid larvae had the potential ability to resist MC-LR. To our knowledge, this is the first time that lipid accumulation, oxidative stress, and detoxification have been studied in this organism at the environmentally relevant concentration of MC-LR; the information may assist in ecological risk assessment of cyanobacterial toxins and their effects on benthic organisms.


Asunto(s)
Chironomidae , Microbioma Gastrointestinal , Animales , Toxinas Marinas , Microcistinas/toxicidad , Estrés Oxidativo , Transcriptoma
10.
Microorganisms ; 9(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34835404

RESUMEN

Microcystis is one of the most common bloom-forming cyanobacteria in freshwater ecosystems throughout the world. However, the underlying life history mechanism and distinct temporal dynamics (inter- and intra-annual) of Microcystis populations in different geographical locations and lakes remain unclear but is critical information needed for the development of robust prediction, prevention, and management strategies. Perennial observations indicate that temperature may be the key factor driving differences in the overwintering strategy. This study quantitatively compared the overwintering abilities of Microcystis aeruginosa (Ma) in both the water column and sediments under a gradient of overwintering water temperatures (i.e., 4, 8, and 12 °C) using the death and proliferation rates of Ma. The results show that the dynamics of the Microcystis overwintering strategy were significantly affected by water temperatures. At 4 and 8 °C, Ma mainly overwintered in sediments and disappeared from the water column after exposure to low temperatures for a long duration, although some Microcystis cells can overwinter in the water column for short durations at low temperatures. At 12 °C, most Ma can overwinter in the water column. Rising temperatures promoted the proliferation of pelagic Ma but accelerated the death of benthic Ma. With warmer winter temperatures, pelagic Microcystis might become the primary inoculum sources in the spring. Our study highlights the overwintering strategy flexibility in explaining temporal dynamics differences of Microcystis among in geographical locations and should be considered in the context of global warming.

11.
Environ Pollut ; 287: 117613, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34147780

RESUMEN

Species of the genus Microcystis are among the most notorious cyanobacteria in eutrophic lakes worldwide, with ability present adverse effects on many aquatic organisms. In the surface sediments, Microcystis can be ingested by benthic macroinvertebrates such as Chironomus. However, the potential negative effects of Microcystis on Chironomus life history traits remain unclear. In the present study, we investigated the effect of different Microcystis diets on specific behaviors (burrowing activity, locomotion ability) and life history traits of Chironomus pallidivittatus (Diptera, Chironomidae). We also studied the interactive effects of microcystin-producing M. aeruginosa and temperature (15, 20, and 25 °C) stress on chironomid larvae. The results showed that the inhibitory effect on the cumulative emergence and burrowing activity of larvae was more severe when they were fed M. aeruginosa among the three Microcystis diets groups. Locomotion ability (i.e., locomotor distance and velocity) and adult dry weight decreased significantly in the group fed M. aeruginosa. Locomotion was significantly inhibited and mortality increased when the larvae were fed a mixture of M. aeruginosa and M. wesenbergii, which may have been the result of additive or synergistic effect of the toxins. Under the stress of lower temperature, C. pallidivittatus larvae exhibited weaker locomotion and growth ability, and the emerging adults were mostly male. At both the lower and higher temperature conditions, M. aeruginosa cause cumulative emergence decreased, and sex ratio imbalance, which inhibited the reproduction of larvae from the population perspective. The fourth-instar larvae showed better adaption to Microcystis than did the other instars. This study thus highlights the adverse effects of microcystin-producing M. aeruginosa on Chironomus. It also provides a novel perspective on how environmental factors may influence the behavior and life history traits of chironomid larvae, and how they may respond to cyanobacterial blooms and global warming.


Asunto(s)
Chironomidae , Rasgos de la Historia de Vida , Microcystis , Animales , Femenino , Masculino , Microcistinas/toxicidad
12.
Bioresour Technol ; 337: 125391, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34139566

RESUMEN

To promote efficiency nitrogen-rich wastewater treatment from a sequencing batch biofilm reactor (SBBR), three aerobic denitrifiers (Pseudomonas mendocinaIHB602, Methylobacterium gregansDC-1 and Pseudomonas stutzeriIHB618) with dual-capacities of strong auto-aggregation and high nitrogen removal efficiency were studied. The aggregation index analysis indicated that coaggregation of the three strains co-existed was better when compared with one or two strains grown alone. Optimal coaggregation strains were used to bioaugmente a test reactor (SBBRT), which exhibited a shorter time for biofilm-formation than uninoculated control reactor (SBBRC). With different influent ammonia-N loads (150, 200 and 300 mg·L-1), the average ammonia-N and nitrate-N removal efficiency were all higher than that in SBBRC, as well as a lower nitrite-N accumulation. Microbial community structure analysis revealed coaggregation strains may successfully colonize in the bioreactor and be very tolerant of high nitrogen concentrations, and contribute to the high efficiency of inorganic nitrogen-removal and biofilm-formation.


Asunto(s)
Desnitrificación , Nitrógeno , Biopelículas , Reactores Biológicos , Nitrificación , Nitrógeno/análisis , Eliminación de Residuos Líquidos , Aguas Residuales
13.
Environ Sci Pollut Res Int ; 28(31): 42082-42092, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33792846

RESUMEN

A mechanical harvesting technology based on coupling flocculation with a rotary drum filter (RDF, 35-µm) was applied to remove cyanobacterial blooms and produce clean water in Lake Caohai, a sub-lake of Lake Dianchi (Kunming, China). After treatment with a shipboard RDF and cationic polyacrylamide (CPAM, 0.5-2 mg/L) flocculation, > 95% of cyanobacterial biomass was removed. The chlorophyll-a (Chl-a) concentration and turbidity in the effluent were < 8 µg/L and < 3 NTU, respectively. Nutrient concentrations were also markedly reduced, with a permanganate index (PI) of < 2 mg/L and total phosphorus concentration of < 20 µg/L. The total nitrogen concentration was reduced from 2.75 to 1.65 mg/L, and most of the residual nitrogen was nitrate. Although powerful for the removal of suspended particles and an enhanced water transparency, the combined technology showed no significant reduction in inorganic nutrients and only a slight reduction in dissolved organic matter (DOM). The concentrations of protein and polysaccharide were significantly reduced, while that of humic matter did not change during the process. After flushing with the effluent of the RDF, a 20,000-m3 enclosure of lake water became clear when the volume of the effluent was 1.8 times that of the water enclosure. The electrical energy per order (EE/O) was calculated to be 0.053kWh/m3, which is lower than that of transferring water from more than 10 km away (0.058 kWh/m3). Thus, a shipboard RDF coupled with CPAM flocculation is a promising approach to remove harmful cyanobacterial blooms and improve the water environment of eutrophic lakes.


Asunto(s)
Cianobacterias , Eutrofización , China , Floculación , Lagos , Fósforo/análisis , Agua
14.
Chemosphere ; 277: 130321, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33774238

RESUMEN

Cyanobacterial blooms are a major problem in many lakes and can negatively impact public health and ecosystem services. The bioflocculation technique has proven to be a cost-effective, environmentally friendly technique with no secondary pollution to harvest multiple microalgae; however, few studies have focused on its effect on and potential for controlling cyanobacterial blooms in eutrophic lakes. In this study, the bioflocculation efficiencies of different Microcystis species under Glyptotendipes tokunagai (Diptera, Chironomidae) stress conditions and the interactions between secreted silk from Chironomid larvae and extracellular polymeric substances (EPS) from Microcystis were compared. The results indicated that G. tokunagai presented better bioflocculation efficiency on M. wesenbergii than on M. aeruginosa. The formation of "Large Algal Aggregate" flocs was promoted by the derived-soluble extracellular polymeric substances (i.e., proteins and polysaccharides, sEPS) from M. wesenbergii and silk from G. tokunagai. Both M. wesenbergii and midge silk had abundant functional groups, which was beneficial to the formation of the large aggregate. G. tokunagai secreted a large amount of silk to bridge with the sEPS of M. wesenbergii, forming a network structure via interaction between filamentous substance (i.e., complex of sEPS and silk) that plays an important role in the aggregation of Microcystis and the removal of the Microcystis biomass in the water column. The findings provide further insights that will benefit the existing efforts of combating Microcystis blooms in the water column via bioflocculation and will provide a new sustainable approach for inhibiting early bloom formation from the perspective of its provenance in the sediment-water interface.


Asunto(s)
Chironomidae , Microcystis , Animales , Ecosistema , Matriz Extracelular de Sustancias Poliméricas , Seda
15.
Bioprocess Biosyst Eng ; 44(6): 1227-1235, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33595724

RESUMEN

An aerobic denitrifying bacterium, stain LK-618, was isolated from lake sediment surface and the efficacy of inorganic nitrogen removal was tested. Stain LK-618 identified as Pseudomonas sihuiensis by 16S rRNA sequencing analysis. Trisodium citrate was found to be the ideal carbon source for this strain. When an initial nitrogen sources of approximately 50 mg/L nitrate, ammonium, or nitrite was solely selected as the nitrogen source, the nitrogen removal efficiencies were 91.4% (3.86 mg/L/h), 95.07% (2.47 mg/L/h) and 97.7% (2.41 mg/L/h), respectively. Nitrogen balance analysis revealed that 55.12% NO3--N was removed as N2. Response surface methodology (RSM) analysis demonstrated that the optimal Total Nitrogen (TN) removal ratio for strain LK-618 was under C/N ratio of 12.63, shaking speed of 52.06 rpm, temperature of 28.5 °C and pH of 6.86. In addition, strain LK-618 could tolerate NaCl concentrations up to 20 g/L, and its most efficient denitrification capacity was presented at NaCl concentrations of 0-10 g/L. Therefore, strain LK-618 has potential application on the removal of inorganic nitrogen from saline wastewater under aerobic conditions.


Asunto(s)
Desnitrificación , Nitrógeno/metabolismo , Pseudomonas/crecimiento & desarrollo , Aerobiosis , Biodegradación Ambiental
16.
Water Res ; 194: 116908, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33596491

RESUMEN

Light availability is an important driver of algal growth and for the formation of surface blooms. The formation of Microcystis surface scum decreases the transparency of the water column and influences the vertical distribution of light intensity. Only few studies analysed the interactions between the dynamics of surface blooms and the light distribution in the water column. Particularly the effect of light attenuation caused by Microcystis colonies (self-shading) on the formation of surface scum has not been explored. In the present study, we simulate the effect of variable cell concentration of Microcystis colonies on the vertical distribution of light in the water column based on experimental estimates of the extinction coefficient of Microcystis colonies. The laboratory observations indicated that higher cell concentration of Microcystis enhance the light attenuation in water column and promotes surface scum formation. We extended an existing model for the light-driven migration of Microcystis by introducing the effect of self-shading and simulated the dynamics of vertical migration for different cell concentrations and different colonial morphologies. The simulation results show that high cell concentrations of Microcystis promote surface scum formation, as well as its persistence throughout diel photoperiods. Large and tight Microcystis colonies facilitate scum formation, while small and loose colonies increase scum stability and persistence. This study reveals a positive feedback regulation of Microcystis surface scum formation and stability by self-shading and provides novel insights into the underlying mechanisms.


Asunto(s)
Microcystis , Retroalimentación , Laboratorios , Agua
17.
Environ Sci Pollut Res Int ; 27(34): 42313-42323, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32651788

RESUMEN

The buoyancy of Microcystis colonies determines the occurrence and dominance of bloom on the water surface. Besides the cell density regulation and the formation of larger size aggregates, increases in cell volume per colony (Vcell) and the colony's compactness (i.e., volume ratio of cells to the colony, VR) may promote Microcystis colony buoyancy. Yet only a few studies have studied the relationship between the internal structure variation of colonies and their buoyancy, and the co-regulatory role of Vcell and VR of Microcystis colonies in the floating velocity (FV) remains largely unexplored. In the present study, we optimized a method for measuring the compactness of Microcystis colonies based on the linear relationship between total Vcell and chlorophyll a. Different relationships between the VRs and FVs were observed with different colony size and Vcell range groups. Both field and laboratory experiments showed that FV/(D50, median diameter)2 had a significant linear relationship with VR, indicating that the cell density and extracellular polysaccharides were unchanged over a short time period and could be estimated via the slope and intercept of a fitted line. We also constructed a functional relationship between FV, VR, and Vcell and found that high VR and Vcell can promote Microcystis buoyancy. This means that increasing cell compactness or Vcell may be an active regulation strategy for Microcystis colonies to promote buoyancy. Therefore, quantifying the internal structure of Microcystis colonies is strongly recommended for the assessment of Microcystis bloom development and their management. Graphical abstract.


Asunto(s)
Microcystis , Tamaño de la Célula , Clorofila A , Agua
18.
Sci Total Environ ; 728: 138727, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32361580

RESUMEN

Cyanobacteria of the genus Microcystis produces surface scum that negatively affects water quality in inland waters. This scum layer can be disintegrated and vertically dispersed by external forces (e.g., wind mixing), followed by reformation of surface scum as buoyant Microcystis colonies migrate upward. However, the recovery dynamics of Microcystis surface scum following a strong mixing event have rarely been studied. Here, we used a tank experiment to investigate the process of Microcystis surface scum recovery after a mixing event with focus on dynamics of colonies of different size classes and their contribution to that process. Microcystis colony size distribution and colony volume concentration was measured using a laser in-situ scattering and transmissometry instrument. The dynamics of Microcystis in the water column and upward colony migration velocity were strongly dependent on colony size. Larger colonies (>180 µm) with fast upward migration rates contributed the most to surface scum formation shortly after turbulence subsided. The contribution of slowly migrating smaller colonies to scum formation was observed over notably longer time. The estimated floating velocities of large colonies ranged 0.15 to 0.46 m h-1 depending on colony size and were 5-15 times higher than those of smaller colonies (~0.03 m h-1). The changes in colony size distribution of Microcystis in the water column reflect the dynamics of surface scum. Analysis of size distribution of Microcystis colonies can be used for better understanding and prediction of Microcystis surface scum development in water bodies.


Asunto(s)
Cianobacterias , Microcystis , Vehículos a Motor , Agua , Calidad del Agua
19.
Bioresour Technol ; 303: 122905, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32032938

RESUMEN

A strain with efficient biofilm-formation and aerobic denitrification capabilities was isolated and identified as Pseudomonas mendocina IHB602. In pure culture, strain IHB602 removed almost all NO3--N, NO2--N, and NH4+-N (initial concentrations 50 mg/L) within 24 h. The strain produced large amounts of extracellular polymeric substances (maximum 430.33 mg/g cell dry weight) rich in protein but containing almost no humic acid. This, and strong autoaggregation (maximum 47.09%) and hydrophobicity (maximum 85.07%), imparted strain IHB602 with biofilm forming traits. A sequencing batch biofilm reactor bioaugmented with strain IHB602 (SBBR1) had more rapid biofilm-formation than the control without strain IHB602 inoculation (SBBR2). During the stabilization period, the effluent removal ratios for NH4+-N (95%), NO3--N (91%) and TN (88%) in SBBR1 were significantly higher than those in SBBR2 (NH4+-N: 91%, NO3--N: 88%, TN: 82%). Microbial community structure analysis revealed that strain IHB602 successfully proliferated and contributed to nitrogen removal as well as biofilm formation.


Asunto(s)
Nitrógeno , Aguas Residuales , Biopelículas , Reactores Biológicos , Desnitrificación , Eliminación de Residuos Líquidos
20.
Bioresour Technol ; 293: 122083, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31487615

RESUMEN

A novel aerobic denitrifying strain Methylobacterium gregans DC-1 was isolated and identified. Strain DC-1 removed 98.4% of nitrate-nitrogen (NO3--N) and 80.7% of total organic carbon with initial concentrations of 50 and 2400 mg/l, respectively. The N balance showed that most NO3--N was converted to N2 (62.18%) without nitrous oxide (N2O) emission. Response surface analysis showed that the optimal conditions for total N removal were carbon (C):N ratio of 18.7, temperature of 26.8 °C, pH of 6.5 and shaking speed of 180 rpm. In combination with the N balance and successful amplification of napA, nirK and nosZ genes, the metabolic pathway was as follows: NO3-NO2- → NO → N2O → N2. Strain DC-1 had strong auto-aggregation rate (maximum 38.7%), produced large amounts of extracellular polymeric substances (EPS; maximum of 781.4 mg/g cell dry weight) and had corresponding strong hydrophobicity (maximum 83.2%). Pearson correlation analysis showed that EPS content and hydrophobicity were significantly positively correlated with auto-aggregation.


Asunto(s)
Methylobacterium , Óxido Nitroso , Desnitrificación , Nitratos , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...