Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Pac Symp Biocomput ; 29: 611-626, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160310

RESUMEN

Polygenic risk scores (PRS) have predominantly been derived from genome-wide association studies (GWAS) conducted in European ancestry (EUR) individuals. In this study, we present an in-depth evaluation of PRS based on multi-ancestry GWAS for five cardiometabolic phenotypes in the Penn Medicine BioBank (PMBB) followed by a phenome-wide association study (PheWAS). We examine the PRS performance across all individuals and separately in African ancestry (AFR) and EUR ancestry groups. For AFR individuals, PRS derived using the multi-ancestry LD panel showed a higher effect size for four out of five PRSs (DBP, SBP, T2D, and BMI) than those derived from the AFR LD panel. In contrast, for EUR individuals, the multi-ancestry LD panel PRS demonstrated a higher effect size for two out of five PRSs (SBP and T2D) compared to the EUR LD panel. These findings underscore the potential benefits of utilizing a multi-ancestry LD panel for PRS derivation in diverse genetic backgrounds and demonstrate overall robustness in all individuals. Our results also revealed significant associations between PRS and various phenotypic categories. For instance, CAD PRS was linked with 18 phenotypes in AFR and 82 in EUR, while T2D PRS correlated with 84 phenotypes in AFR and 78 in EUR. Notably, associations like hyperlipidemia, renal failure, atrial fibrillation, coronary atherosclerosis, obesity, and hypertension were observed across different PRSs in both AFR and EUR groups, with varying effect sizes and significance levels. However, in AFR individuals, the strength and number of PRS associations with other phenotypes were generally reduced compared to EUR individuals. Our study underscores the need for future research to prioritize 1) conducting GWAS in diverse ancestry groups and 2) creating a cosmopolitan PRS methodology that is universally applicable across all genetic backgrounds. Such advances will foster a more equitable and personalized approach to precision medicine.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión , Humanos , Puntuación de Riesgo Genético , Estudio de Asociación del Genoma Completo/métodos , Predisposición Genética a la Enfermedad , Medicina de Precisión , Herencia Multifactorial , Biología Computacional , Fenotipo , Hipertensión/genética , Diabetes Mellitus Tipo 2/genética , Factores de Riesgo
2.
Nat Med ; 29(6): 1540-1549, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37248299

RESUMEN

Preeclampsia and gestational hypertension are common pregnancy complications associated with adverse maternal and child outcomes. Current tools for prediction, prevention and treatment are limited. Here we tested the association of maternal DNA sequence variants with preeclampsia in 20,064 cases and 703,117 control individuals and with gestational hypertension in 11,027 cases and 412,788 control individuals across discovery and follow-up cohorts using multi-ancestry meta-analysis. Altogether, we identified 18 independent loci associated with preeclampsia/eclampsia and/or gestational hypertension, 12 of which are new (for example, MTHFR-CLCN6, WNT3A, NPR3, PGR and RGL3), including two loci (PLCE1 and FURIN) identified in the multitrait analysis. Identified loci highlight the role of natriuretic peptide signaling, angiogenesis, renal glomerular function, trophoblast development and immune dysregulation. We derived genome-wide polygenic risk scores that predicted preeclampsia/eclampsia and gestational hypertension in external cohorts, independent of clinical risk factors, and reclassified eligibility for low-dose aspirin to prevent preeclampsia. Collectively, these findings provide mechanistic insights into the hypertensive disorders of pregnancy and have the potential to advance pregnancy risk stratification.


Asunto(s)
Eclampsia , Hipertensión Inducida en el Embarazo , Hipertensión , Preeclampsia , Embarazo , Femenino , Niño , Humanos , Hipertensión Inducida en el Embarazo/genética , Preeclampsia/genética , Preeclampsia/prevención & control , Aspirina , Factores de Riesgo
3.
Am J Obstet Gynecol ; 229(3): 298.e1-298.e19, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36933686

RESUMEN

BACKGROUND: Hypertensive disorders during pregnancy are associated with the risk of long-term cardiovascular disease after pregnancy, but it has not yet been determined whether genetic predisposition for hypertensive disorders during pregnancy can predict the risk for long-term cardiovascular disease. OBJECTIVE: This study aimed to evaluate the risk for long-term atherosclerotic cardiovascular disease according to polygenic risk scores for hypertensive disorders during pregnancy. STUDY DESIGN: Among UK Biobank participants, we included European-descent women (n=164,575) with at least 1 live birth. Participants were divided according to genetic risk categorized by polygenic risk scores for hypertensive disorders during pregnancy (low risk, score ≤25th percentile; medium risk, score 25th∼75th percentile; high risk, score >75th percentile), and were evaluated for incident atherosclerotic cardiovascular disease, defined as the new occurrence of one of the following: coronary artery disease, myocardial infarction, ischemic stroke, or peripheral artery disease. RESULTS: Among the study population, 2427 (1.5%) had a history of hypertensive disorders during pregnancy, and 8942 (5.6%) developed incident atherosclerotic cardiovascular disease after enrollment. Women with high genetic risk for hypertensive disorders during pregnancy had a higher prevalence of hypertension at enrollment. After enrollment, women with high genetic risk for hypertensive disorders during pregnancy had an increased risk for incident atherosclerotic cardiovascular disease, including coronary artery disease, myocardial infarction, and peripheral artery disease, compared with those with low genetic risk, even after adjustment for history of hypertensive disorders during pregnancy. CONCLUSION: High genetic risk for hypertensive disorders during pregnancy was associated with increased risk for atherosclerotic cardiovascular disease. This study provides evidence on the informative value of polygenic risk scores for hypertensive disorders during pregnancy in prediction of long-term cardiovascular outcomes later in life.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Hipertensión Inducida en el Embarazo , Infarto del Miocardio , Enfermedad Arterial Periférica , Embarazo , Humanos , Femenino , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Hipertensión Inducida en el Embarazo/epidemiología , Hipertensión Inducida en el Embarazo/genética , Factores de Riesgo , Infarto del Miocardio/epidemiología
4.
medRxiv ; 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36824881

RESUMEN

Background: Preeclampsia, a pregnancy complication characterized by hypertension after 20 gestational weeks, is a major cause of maternal and neonatal morbidity and mortality. The mechanisms leading to preeclampsia are unclear; however, there is evidence that preeclampsia is highly heritable. We evaluated the association of polygenic risk scores (PRS) for blood pressure traits and preeclampsia to assess whether there is shared genetic architecture. Methods: Participants were obtained from Vanderbilt University's BioVU, the Electronic Medical Records and Genomics network, and the Penn Medicine Biobank. Non-Hispanic Black and White females of reproductive age with indications of pregnancy and genotype information were included. Preeclampsia was defined by ICD codes. Summary statistics for diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) PRS were obtained from Giri et al 2019. Associations between preeclampsia and each PRS were evaluated separately by race and study population before evidence was meta-analyzed. Prediction models were developed and evaluated using 10-fold cross validation. Results: In the 3,504 Black and 5,009 White individuals included, the rate of preeclampsia was 15.49%. The DBP and SBP PRSs were associated with preeclampsia in Whites but not Blacks. The PP PRS was significantly associated with preeclampsia in Blacks and Whites. In trans-ancestry meta-analysis, all PRSs were associated with preeclampsia (OR DBP =1.10, 95% CI=1.02-1.17, p =7.68×10 -3 ; OR SBP =1.16, 95% CI=1.09-1.23, p =2.23×10 -6 ; OR PP =1.14, 95% CI=1.07-1.27, p =9.86×10 -5 ). However, addition of PRSs to clinical prediction models did not improve predictive performance. Conclusions: Genetic factors contributing to blood pressure regulation in the general population also predispose to preeclampsia.

5.
J Am Heart Assoc ; 12(5): e026561, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36846987

RESUMEN

Background Cardiometabolic diseases are highly comorbid, but their relationship with female-specific or overwhelmingly female-predominant health conditions (breast cancer, endometriosis, pregnancy complications) is understudied. This study aimed to estimate the cross-trait genetic overlap and influence of genetic burden of cardiometabolic traits on health conditions unique to women. Methods and Results Using electronic health record data from 71 008 ancestrally diverse women, we examined relationships between 23 obstetrical/gynecological conditions and 4 cardiometabolic phenotypes (body mass index, coronary artery disease, type 2 diabetes, and hypertension) by performing 4 analyses: (1) cross-trait genetic correlation analyses to compare genetic architecture, (2) polygenic risk score-based association tests to characterize shared genetic effects on disease risk, (3) Mendelian randomization for significant associations to assess cross-trait causal relationships, and (4) chronology analyses to visualize the timeline of events unique to groups of women with high and low genetic burden for cardiometabolic traits and highlight the disease prevalence in risk groups by age. We observed 27 significant associations between cardiometabolic polygenic scores and obstetrical/gynecological conditions (body mass index and endometrial cancer, body mass index and polycystic ovarian syndrome, type 2 diabetes and gestational diabetes, type 2 diabetes and polycystic ovarian syndrome). Mendelian randomization analysis provided additional evidence of independent causal effects. We also identified an inverse association between coronary artery disease and breast cancer. High cardiometabolic polygenic scores were associated with early development of polycystic ovarian syndrome and gestational hypertension. Conclusions We conclude that polygenic susceptibility to cardiometabolic traits is associated with elevated risk of certain female-specific health conditions.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Síndrome del Ovario Poliquístico , Humanos , Femenino , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Síndrome del Ovario Poliquístico/epidemiología , Síndrome del Ovario Poliquístico/genética , Factores de Riesgo , Fenotipo
6.
Pac Symp Biocomput ; 28: 233-244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36540980

RESUMEN

Widespread availability of antiretroviral therapies (ART) for HIV-1 have generated considerable interest in understanding the pharmacogenomics of ART. In some individuals, ART has been associated with excessive weight gain, which disproportionately affects women of African ancestry. The underlying biology of ART-associated weight gain is poorly understood, but some genetic markers which modify weight gain risk have been suggested, with more genetic factors likely remaining undiscovered. To overcome limitations in available sample sizes for genome-wide association studies (GWAS) in people with HIV, we explored whether a multi-ancestry polygenic risk score (PRS) derived from large, publicly available non-HIV GWAS for body mass index (BMI) can achieve high cross-ancestry performance for predicting baseline BMI in diverse, prospective ART clinical trials datasets, and whether that PRSBMI is also associated with change in BMI over 48 weeks on ART. We show that PRSBMI explained ∼5-7% of variability in baseline (pre-ART) BMI, with high performance in both European and African genetic ancestry groups, but that PRSBMI was not associated with change in BMI on ART. This study argues against a shared genetic predisposition for baseline (pre-ART) BMI and ART-associated weight gain.


Asunto(s)
Estudio de Asociación del Genoma Completo , Infecciones por VIH , Humanos , Femenino , Índice de Masa Corporal , Estudios Prospectivos , Biología Computacional , Aumento de Peso/genética , Factores de Riesgo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Predisposición Genética a la Enfermedad
7.
Pac Symp Biocomput ; 28: 437-448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36540998

RESUMEN

Polygenic risk scores (PRS) have led to enthusiasm for precision medicine. However, it is well documented that PRS do not generalize across groups differing in ancestry or sample characteristics e.g., age. Quantifying performance of PRS across different groups of study participants, using genome-wide association study (GWAS) summary statistics from multiple ancestry groups and sample sizes, and using different linkage disequilibrium (LD) reference panels may clarify which factors are limiting PRS transferability. To evaluate these factors in the PRS generation process, we generated body mass index (BMI) PRS (PRSBMI) in the Electronic Medical Records and Genomics (eMERGE) network (N=75,661). Analyses were conducted in two ancestry groups (European and African) and three age ranges (adult, teenagers, and children). For PRSBMI calculations, we evaluated five LD reference panels and three sets of GWAS summary statistics of varying sample size and ancestry. PRSBMI performance increased for both African and European ancestry individuals using cross-ancestry GWAS summary statistics compared to European-only summary statistics (6.3% and 3.7% relative R2 increase, respectively, pAfrican=0.038, pEuropean=6.26x10-4). The effects of LD reference panels were more pronounced in African ancestry study datasets. PRSBMI performance degraded in children; R2 was less than half of teenagers or adults. The effect of GWAS summary statistics sample size was small when modeled with the other factors. Additionally, the potential of using a PRS generated for one trait to predict risk for comorbid diseases is not well understood especially in the context of cross-ancestry analyses - we explored clinical comorbidities from the electronic health record associated with PRSBMI and identified significant associations with type 2 diabetes and coronary atherosclerosis. In summary, this study quantifies the effects that ancestry, GWAS summary statistic sample size, and LD reference panel have on PRS performance, especially in cross-ancestry and age-specific analyses.


Asunto(s)
Diabetes Mellitus Tipo 2 , Adulto , Adolescente , Niño , Humanos , Diabetes Mellitus Tipo 2/genética , Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Biología Computacional , Factores de Riesgo , Herencia Multifactorial
8.
Cell Rep Med ; 3(12): 100855, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36513072

RESUMEN

Nonalcoholic fatty liver disease is common and highly heritable. Genetic studies of hepatic fat have not sufficiently addressed non-European and rare variants. In a medical biobank, we quantitate hepatic fat from clinical computed tomography (CT) scans via deep learning in 10,283 participants with whole-exome sequences available. We conduct exome-wide associations of single variants and rare predicted loss-of-function (pLOF) variants with CT-based hepatic fat and perform cross-modality replication in the UK Biobank (UKB) by linking whole-exome sequences to MRI-based hepatic fat. We confirm single variants previously associated with hepatic fat and identify several additional variants, including two (FGD5 H600Y and CITED2 S198_G199del) that replicated in UKB. A burden of rare pLOF variants in LMF2 is associated with increased hepatic fat and replicates in UKB. Quantitative phenotypes generated from clinical imaging studies and intersected with genomic data in medical biobanks have the potential to identify molecular pathways associated with human traits and disease.


Asunto(s)
Exoma , Enfermedad del Hígado Graso no Alcohólico , Humanos , Exoma/genética , Bancos de Muestras Biológicas , Fenotipo , Tomografía Computarizada por Rayos X , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/genética , Proteínas Represoras/genética , Transactivadores/genética
9.
Front Cardiovasc Med ; 9: 919374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061534

RESUMEN

Background: Previous studies primarily targeted the ability of polygenic risk scores (PRSs) to predict a specific disease, and only a few studies have investigated the association between genetic risk scores and cardiovascular (CV) mortality. We assessed PRSs for coronary artery disease (CAD) and type 2 diabetes (T2DM) as the predictive factors for CV mortality, independent of traditional risk factors, and further investigated the additive effect between lifestyle behavior and PRS on CV mortality. Methods: We used genetic and phenotypic data from UK Biobank participants aged 40-69 years at baseline, collected with standardized procedures. Genome-wide PRSs were constructed using >6 million genetic variants. Cox proportional hazard models were used to analyze the relationship between PRS and CV mortality with stratification by age, sex, disease status, and lifestyle behavior. Results: Of 377,909 UK Biobank participants having European ancestry, 3,210 (0.8%) died due to CV disease during a median follow-up of 8.9 years. CV mortality risk was significantly associated with CAD PRS [low vs. very high genetic risk groups, CAD PRS hazard ratio (HR) 2.61 (2.02-3.36)] and T2DM PRS [HR 2.08 (1.58-2.73)], respectively. These relationships remained significant even after an adjustment for a comprehensive range of demographic and clinical factors. In the very high genetic risk group, adherence to an unfavorable lifestyle was further associated with a substantially increased risk of CV mortality [favorable vs. unfavorable lifestyle with very high genetic risk for CAD PRS, HR 8.31 (5.12-13.49); T2DM PRS, HR 5.84 (3.39-10.04)]. Across all genetic risk groups, 32.1% of CV mortality was attributable to lifestyle behavior [population attributable fraction (PAF) 32.1% (95% CI 28.8-35.3%)] and 14.1% was attributable to smoking [PAF 14.1% (95% CI 12.4-15.7%)]. There was no evidence of significant interaction between PRSs and age, sex, or lifestyle behavior in predicting the risk of CV mortality. Conclusion: PRSs for CAD or T2DM and lifestyle behaviors are the independent predictive factors for future CV mortality in the white, middle-aged population. PRS-based risk assessment could be useful to identify the individuals who need intensive behavioral or therapeutic interventions to reduce the risk of CV mortality.

10.
Cardiovasc Diabetol ; 21(1): 131, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35836215

RESUMEN

BACKGROUND: Few studies have examined associations between genetic risk for type 2 diabetes (T2D), lifestyle, clinical risk factors, and cardiovascular disease (CVD). We aimed to investigate the association of and potential interactions among genetic risk for T2D, lifestyle behavior, and metabolic risk factors with CVD. METHODS: A total of 345,217 unrelated participants of white British descent were included in analyses. Genetic risk for T2D was estimated as a genome-wide polygenic risk score constructed from > 6 million genetic variants. A favorable lifestyle was defined in terms of four modifiable lifestyle components, and metabolic health status was determined according to the presence of metabolic syndrome components. RESULTS: During a median follow-up of 8.9 years, 21,865 CVD cases (6.3%) were identified. Compared with the low genetic risk group, participants at high genetic risk for T2D had higher rates of overall CVD events, CVD subtypes (coronary artery disease, peripheral artery disease, heart failure, and atrial fibrillation/flutter), and CVD mortality. Individuals at very high genetic risk for T2D had a 35% higher risk of CVD than those with low genetic risk (HR 1.35 [95% CI 1.19 to 1.53]). A significant gradient of increased CVD risk was observed across genetic risk, lifestyle, and metabolic health status (P for trend > 0.001). Those with favorable lifestyle and metabolically healthy status had significantly reduced risk of CVD events regardless of T2D genetic risk. This risk reduction was more apparent in young participants (≤ 50 years). CONCLUSIONS: Genetic risk for T2D was associated with increased risks of overall CVD, various CVD subtypes, and fatal CVD. Engaging in a healthy lifestyle and maintaining metabolic health may reduce subsequent risk of CVD regardless of genetic risk for T2D.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Bancos de Muestras Biológicas , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Humanos , Estilo de Vida , Estudios Prospectivos , Factores de Riesgo , Reino Unido/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...