Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 349: 123909, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582183

RESUMEN

Pteris vittata (P. vittata), an arsenic (As) hyperaccumulator commonly used in the phytoremediation of As-contaminated soils, contains root-associated bacteria (RAB) including those that colonize the root rhizosphere and endosphere, which can adapt to As contamination and improve plant health. As(III)-oxidizing RAB can convert the more toxic arsenite (As(III)) to less toxic arsenate (As(V)) under As-rich conditions, which may promote plant survial. Previous studies have shown that microbial As(III) oxidation occurs in the rhizospheres and endospheres of P. vittata. However, knowledge of RAB of P. vittata responsible for As(III) oxidation remained limited. In this study, members of the Comamonadaceae family were identified as putative As(III) oxidizers, and the core microbiome associated with P. vittata roots using DNA-stable isotope probing (SIP), amplicon sequencing and metagenomic analysis. Metagenomic binning revealed that metagenome assembled genomes (MAGs) associated with Comamonadaceae contained several functional genes related to carbon fixation, arsenic resistance, plant growth promotion and bacterial colonization. As(III) oxidation and plant growth promotion may be key features of RAB in promoting P. vittata growth. These results extend the current knowledge of the diversity of As(III)-oxidizing RAB and provide new insights into improving the efficiency of arsenic phytoremediation.


Asunto(s)
Arsenitos , Biodegradación Ambiental , Comamonadaceae , Oxidación-Reducción , Raíces de Plantas , Pteris , Microbiología del Suelo , Contaminantes del Suelo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Arsenitos/metabolismo , Contaminantes del Suelo/metabolismo , Pteris/metabolismo , Comamonadaceae/metabolismo , Comamonadaceae/genética , Rizosfera , Arsénico/metabolismo
2.
Sci Total Environ ; 924: 171429, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38442750

RESUMEN

The growth of pioneer plants in metal mining area soil is closely related to their minimal uptake of toxic elements. Pioneer plants can inhibit the uptake of toxic elements by increasing nutrient uptake. However, few studies have focused on the mechanisms by which the rhizosphere microbiome affect nutrient cycling and their impact on the uptake of toxic elements by pioneer plants. In this study, we selected Blechnum orientale to investigate the potential roles of the rhizosphere microbiome in nutrient cycling and plant growth in a historical tungsten (W) mining area. Our results showed that while the arsenic (As) and W contents in the soil were relatively high, the enrichment levels of As and W in the B. orientale were relatively low. Furthermore, we found that the As and W contents in plants were significantly negatively correlated with soil nutrients (S, P and Mo), suggesting that elevated levels of these soil nutrients could inhibit As and W uptake by B. orientale. Importantly, we found that these nutrients were also identified as the most important factors shaping rhizosphere microbial attributes, including microbial diversity, ecological clusters, and keystone OTUs. Moreover, the genera, keystone taxa and microbial functional genes enriched in the rhizosphere soils from mining areas played a key role in nutrient (S, P and Mo) bioavailability, which could further increase the nutrient uptake by B. orientale. Taken together, our results suggest that rhizosphere microorganisms can improve pioneer plant growth by inhibiting toxic element accumulation via the increase in nutrient cycling in former W mining areas.


Asunto(s)
Arsénico , Helechos , Microbiota , Tracheophyta , Arsénico/análisis , Tungsteno , Rizosfera , Suelo , Plantas , Minería , Microbiología del Suelo
3.
J Agric Food Chem ; 72(9): 4679-4688, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38383292

RESUMEN

Microplastics (MPs) are present in soil as emerging contaminants and pose a threat to soil as well as plants. Here, the effects of MPs on Chinese flowering cabbage from a microbiology perspective were explored. MP size and concentration significantly affected endophytic communities of plant root and petiole (p < 0.05). Under MP treatments, the root, petiole, and leaf exhibited a substantial abundance of pathogenic biomarkers, such as Pseudomonas, Burkholderia, Ralstonia, and Escherichia, resulting in the slow growth and morbidity of the plant. Difference analysis of metabolic pathways revealed that MPs significantly upregulated the pathogenic metabolic pathways (p < 0.05), and the presence of Vibrio infectious and pathogenic metabolic pathways was detected in all three niches of the plant. Moreover, MPs significantly inhibited the contents of carotenoids, iron, vitamin C, and calcium in edible niches of the plant (p < 0.05), and most of the high-abundant biomarkers were negatively correlated with their nutritional qualities.


Asunto(s)
Brassica , Microplásticos , Endófitos/genética , Plásticos/metabolismo , Brassica/metabolismo , Suelo , Biomarcadores/metabolismo , China
4.
Toxics ; 12(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276730

RESUMEN

Uranium mining activities have contributed to the distribution and uptake of radionuclides, which have increased the active concentrations of natural radionuclides in environmental media, causing elevated human health risks. The present study aims to assess the spatial distribution characteristics of natural radionuclides in the surface soils and river sediments of the typical granite uranium mining area in South China, as well as investigate the geochemical features of natural radionuclides in the soil and sediments to understand their migration processes. The activity concentrations for 238U, 226Ra, 232Th, and 40K ranged from 17-3925 Bq/kg, 50-1180 Bq/kg, 29-459 Bq/kg, and 240-1890 Bq/kg, respectively. The open-pit mining areas and tailings pond locations exhibited the highest concentrations of activity for all these radionuclides. This distribution points to an elevated potential health risk due to radiological exposure in these specific areas. Additionally, the values of radium equivalent activity (Raeq) and annual gonadal dose equivalent (AGDE) in those areas were higher than the limits recommended by ICRP (2021). 238U and 226Ra have a significant correlation (0.724), and the cluster analysis was showing a statistically meaningful cluster below 5 indicated that they have similar behavior during parent rock weathering and watershed erosion, and the distribution of 232Th and 40K were influenced by the addition of rock types. The activity ratios of 226Ra/238U, 226Ra/232Th, 238U/40K, and 226Ra/40K variation indicated that 40K more mobile than 226Ra and 238U, U(VI) was reduced to U(IV) by organic matter in the downstream area and re-entered into the sediment during the sediment surface runoff in the small watershed of the uranium ore open-pit mining area. Therefore, it is necessary to further seal up and repair the tailings landfill area.

5.
J Hazard Mater ; 464: 132948, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37984136

RESUMEN

Although response of microbial community to arsenic (As) and antimony (Sb) co-contamination has been investigated in neutral and acidic environments, little is known in alkaline environment. Herein, the microbial response and survival strategies under the stress of As and Sb co-contamination were determined in the alkaline sediments. Elevated concentrations of As (13700 ± 5012 mg/kg) and Sb (10222 ± 1619 mg/kg) were introduced into the alkaline sediments by the mine drainage, which was partially adopted in the aquatic environment and resulted in a relatively lower contamination (As, 6633 ± 1707 mg/kg; Sb, 6108 ± 1095 mg/kg) in the downstream sediments. The microbial richness was significantly damaged and the microbial compositions were dramatically shifted by the As and Sb co-contamination. Metagenomic analysis shed light on the survival strategies of the microbes under the pressure of As and Sb co-contamination including metal oxidation coupled with denitrification, metal reduction, and metal resistance. The representative microbes were revealed in the sediments with higher (Halomonas) and lower (Thiobacillus, Hydrogenophaga and Flavihumibacter) As and Sb concentration, respectively. In addition, antibiotic resistance genes were found to co-occur with metal resistance genes in the assembled bins. These findings might provide theoretical guidance for bioremediation of As and Sb co-contamination in alkaline environment.


Asunto(s)
Arsénico , Microbiota , Antimonio , Arsénico/análisis , Monitoreo del Ambiente , Biodegradación Ambiental
6.
Appl Environ Microbiol ; 89(11): e0096023, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37855640

RESUMEN

IMPORTANCE: In this study, we revealed that the variation in rhizosphere and root endosphere microbial assemblage between host plant ecotypes contribute to their differential abilities to withstand cadmium (Cd) stressors. Furthermore, our study found that phenolic compounds, such as benzenoids and flavonoids, could function as both essential carbon sources and semiochemicals, thereby contributing to the assemblage of rhizosphere microbiome to resist Cd stress. Our findings provide new insights into the mechanisms that drive the differential assemblage of rhizosphere and root endosphere microbiomes to enhance plant growth under abiotic stress.


Asunto(s)
Cadmio , Microbiota , Cadmio/toxicidad , Microbiología del Suelo , Rizosfera , Bacterias , Raíces de Plantas
7.
Ecotoxicol Environ Saf ; 263: 115210, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37418943

RESUMEN

This study investigated the distribution features of uranium-238 (238U), radium-226 (226Ra), thorium-232 (232Th), and potassium-40 (40K) and evaluated the associated environmental radiological hazards of the topsoil and river sediments in the Jinding lead-zinc (Pb-Zn) mine catchment from Southwest China. The activity concentrations of 238U, 226Ra, 232Th, and 40K ranged from 24.0 ± 2.29-60.3 ± 5.26 Bq.kg-1, from 32.5 ± 3.95-69.8 ± 3.39 Bq.kg-1, from 15.3 ± 2.24-58.3 ± 4.92 Bq.kg-1, and from 203 ± 10.2-1140 ± 27.4 Bq.kg-1, respectively. The highest activity concentrations for all these radionuclides were primarily found in the mining areas and decreased with increasing distance from the mining sites. The radiological hazard indices, including radium equivalent activity, absorbed gamma dose rate in the air, outdoor annual effective dose equivalent, annual gonadal dose equivalent, and excess lifetime cancer, revealed that the highest values were observed in the mining area and downstream, specifically in the vicinity of the ore body. These elevated values exceeded the global mean value but remained below the threshold value, suggesting that routine protection measures for Pb-Zn miners during production activities are sufficient. The correlation analysis and cluster analysis revealed strong associations between radionuclides such as 238U, 226Ra, and 232Th, indicating a common source of these radionuclides. The activity ratios of 226Ra/238U, 226Ra/232Th, and 238U/40K varied with distance, suggesting the influence of geological processes and lithological composition on their transport and accumulation. In the mining catchment areas, the variations in these activity ratios increased indicated the impact of limestone material dilution on the levels of 232Th, 40K, and 238U in the upstream region. Moreover, the presence of sulfide minerals in the mining soils contributed to the enrichment of 226Ra and the removal of 238U caused those activity ratios decreased in the mining areas. Therefore, in the Jinding PbZn deposit, the patterns of mining activities and surface runoff processes in the catchment area favored the accumulation of 232Th and 226Ra over 40K and 238U. This study provides the first case study on the geochemical distributions of natural radionuclides in a typical Mississippi Valley-type PbZn mining area and offers fundamental information on radionuclide migration and baseline radiometric data for PbZn deposits worldwide.


Asunto(s)
Monitoreo de Radiación , Radio (Elemento) , Contaminantes Radiactivos del Suelo , Uranio , Suelo , Plomo/análisis , Zinc/análisis , Radioisótopos/análisis , Uranio/análisis , Radio (Elemento)/análisis , Torio/análisis , Contaminantes Radiactivos del Suelo/análisis , Minería
8.
Environ Res ; 216(Pt 2): 114573, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243050

RESUMEN

Tungsten (W) is a critical material that is widely used in military applications, electronics, lighting technology, power engineering and the automotive and aerospace industries. In recent decades, overexploitation of W has generated large amounts of mine waste rocks, which generate elevated content of toxic elements and cause serious adverse effects on ecosystems and public health. Microorganisms are considered important players in toxic element migrations from waste rocks. However, the understanding of how the microbial community structure varies in W mine waste rocks and its key driving factors is still unknown. In this study, high-throughput sequencing methods were used to determine the microbial community profiles along a W content gradient in W mine waste rocks. We found that the microbial community structures showed clear differences across the different W levels in waste rocks. Notably, arsenic (As), instead of W and nutrients, was identified as the most important predictor influencing microbial diversity. Furthermore, our results also showed that As is the most important environmental factor that regulates the distribution patterns of ecological clusters and keystone ASVs. Importantly, we found that the dominant genera have been regulated by As and were widely involved in As biogeochemical cycling in waste rocks. Taken together, our results have provided useful information about the response of microbial communities to W mine waste rocks.


Asunto(s)
Arsénico , Microbiota , Tungsteno
9.
Front Plant Sci ; 13: 914103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275594

RESUMEN

Cadmium (Cd) contamination of agricultural soils poses a potential public health issue for humans. Phytoremediation-based accumulating plants are an effective and sustainable technology for Cadmium remediation of contaminated agricultural soil. The rhizosphere microbiome can promote the growth and Cadmium accumulation in hyperaccumulators, but its taxonomic and functional traits remain elusive. The present study used two ecotypes of Sedum alfredii, an accumulating ecotype (AE) and a non-accumulating ecotype (NAE), as model plants to investigate the rhizosphere microbiome assemblages and influence on plant growth under high cadmium conditions. Our results showed that distinct root microbiomes assembled in association with both ecotypes of S. alfredii and that the assemblages were based largely on the lifestyles of the two ecotypes. In addition, we demonstrated that the functions of the microbes inhabiting the rhizosphere soils were closely associated with root-microbe interactions in both ecotypes of S. alfredii. Importantly, our results also demonstrated that the rhizosphere microbiome assembled in the AE rhizosphere soils contributed to plant growth and cadmium uptake under high cadmium conditions through functions such as nitrogen fixation, phosphorus solubilization, indole acetic acid (IAA) synthesis, and siderophore metabolism. However, this phenomenon was not clearly observed in the NAE. Our results suggest that the rhizosphere microbiome plays important roles in biogeochemical nutrient and metal cycling that can contribute to host plant fitness.

10.
Appl Microbiol Biotechnol ; 106(18): 6289-6299, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36002692

RESUMEN

Metal(loid) selection contributes to selection pressure on antibiotic resistance, but to our knowledge, evidence of the dissemination of antibiotic resistance genes (ARGs) induced by metal(loid)s in mine soil ecosystems is rare. In the current study, using a high-throughput sequencing (HTS)-based metagenomic approach, 819 ARG subtypes were identified in a mine soil ecosystem, indicating that these environmental habitats are important reservoirs of ARGs. The results showed that metal(loid)-induced coselection has an important role in the distribution of soil ARGs. Furthermore, metal(loid) selection-induced ARGs were mainly associated with resistance-nodulation-division (RND) antibiotic efflux, which is distinct from what is observed in agricultural soil ecosystems. By using independent genome binning, metal(loid)s were shown impose coselection pressure on multiple ARGs residing on mobile genetic elements (MGEs), which promotes the dissemination of the antibiotic resistome. Interestingly, the current results showed that the density of several MGEs conferring ARGs was considerably higher in organisms most closely related to the priority pathogens Pseudomonas aeruginosa and Escherichia coli. Together, the results of this study indicate that mine soil ecosystems are important reservoirs of ARGs and that metal(loid)-induced coselection plays critical roles in the dissemination of ARGs in this type of soil habitat. KEY POINTS: • Mining soil ecosystem is a reservoir of antibiotic resistance genes (ARGs). • ARGs distribute via bacterial resistance-nodulation-division efflux systems. • Metal(loid)s coselected ARGs residing on mobile genetic elements in P. aeruginosa and E. coli.


Asunto(s)
Proteínas de Escherichia coli , Suelo , Antibacterianos/farmacología , Proteínas de Ciclo Celular/genética , Farmacorresistencia Microbiana/genética , Ecosistema , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genes Bacterianos , Microbiología del Suelo
11.
Environ Pollut ; 312: 120040, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36030950

RESUMEN

Arsenite (As(III)) is more toxic, mobilizable and bioavailable than arsenate (As(V)). Hence, the transformations between As(III) and As(V) are crucial for the toxicity and mobility of arsenic (As). However, As transformation and microbial communities involved in alkaline soils are largely unknown. Here we investigate two major pathways of As transformation, i.e., As(III) oxidation and As(V) reduction, and identify the bacteria involved in the alkaline soil by combining stable isotope probing with shotgun metagenomic sequencing. As(III) oxidation and significant increase of the aioA genes copies were observed in the treatments amended with As(III) and NO3-, suggesting that As(III) oxidation can couple with nitrate reduction and was mainly catalyzed by the microorganisms containing aioA genes. As(V) reduction was detected in the treatments amended with As(V) and acetate where the abundance of arrA gene significantly increased, indicating that microorganisms with arrA genes were the key As(V) reducers. Acidovorax, Hydrogenophaga, and Ramlibacter were the putative nitrate-dependent As(III) oxidizers, and Deinococcus and Serratia were the putative respiratory As(V) reducers. These findings will improve our understanding of As metabolism and are meaningful for mapping out bioremediation strategies of As contamination in alkaline environment.


Asunto(s)
Arsénico , Arsenitos , Arseniatos/metabolismo , Arsénico/metabolismo , Arsenitos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Isótopos/metabolismo , Nitratos/metabolismo , Oxidación-Reducción , Suelo , Microbiología del Suelo
12.
Environ Sci Pollut Res Int ; 29(42): 63379-63392, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35459989

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) have received increasing attention due to their widespread presence in diverse environments including wastewater treatment plants (WWTPs) and their potential adverse health effects. Perfluorooctanoic acid (PFOA) is one of the most detected forms of PFASs in WWTPs. However, there is still a paucity of knowledge about the effect of PFASs on microorganisms of the key component of WWTP, activated sludge. In this study, lab-scale microcosm experiments were established to evaluate the influences of PFOA on activated sludge microbes under aerobic and anaerobic conditions. The diversity, structure, and microbe-microbe interaction of microbial community were determined by 16S rRNA gene amplicon sequencing and co-occurrence network analysis. After 90 days of exposure to PFOA, activated sludge microbial richness decreased under both aerobic and anaerobic conditions. Specifically, under aerobic condition, Rhodopseudomonas (mean relative abundance 3.6%), Flavobacterium (2.4%), and Ignavibacterium (6.6%) were enriched in PFOA-spiked activated sludge compared with that in the unspiked sludge (2.6%, 0.1%, and 1.9%, respectively). By contrast, after 90 days of exposure to PFOA, Eubacterium (2.1%), Hyphomicrobium (1.8%), and Methyloversatilis (1.2%) were enriched under anaerobic condition, and more abundant than that in the control sludge (0.4%, 1.5%, and 0.6%, respectively). These genera were the potential PFOA-resistant members. In addition, Azospirillum and Sporomusa were the most connected taxa in PFOA-aerobic and PFOA-anaerobic networks, respectively. Prediction of the functional gene showed that PFOA inhibited some gene expression of sludge microbes, such as transcription, amino acid transport and metabolism, and energy production and conversion. In summary, continued exposure to PFOA induced substantial shifts of the sludge bacterial diversity and composition under both aerobic and anaerobic conditions.


Asunto(s)
Fluorocarburos , Microbiota , Aminoácidos , Anaerobiosis , Bacterias , Caprilatos , Fluorocarburos/toxicidad , ARN Ribosómico 16S , Aguas del Alcantarillado/química , Aguas Residuales/microbiología
13.
Environ Sci Pollut Res Int ; 29(40): 61236-61246, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35438402

RESUMEN

Both arsenic (As) and antimony (Sb) are primary environmental contaminants that often co-exist at contaminated sites. Though the microbial community compositions of As- and Sb-contaminated sites have been previously described, the changes in microbial community interactions and community functions remain elusive. In the current study, several key metabolic processes, such as As/Sb detoxification and carbon fixation, were enriched under heavily contaminated conditions. Furthermore, the identified keystone taxa, which are associated with the families Nitrosomonadaceae, Pedosphaeraceae, Halieaceae, and Latescibacterota, demonstrated positive correlations with As and Sb concentrations, indicating that they may be resistant to As and Sb toxicities. Accordingly, arsenic resistance-related functions, along with several functions such as carbon fixation, were found to be enriched in heavily contaminated sites. The current study elucidated the key microbial populations in As- and Sb-contaminated rice terraces and may provide useful information for remediation purposes.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Antimonio/análisis , Arsénico/análisis , Monitoreo del Ambiente , Humanos , Oryza/metabolismo , Suelo , Contaminantes del Suelo/análisis
14.
Ecotoxicol Environ Saf ; 233: 113333, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35203006

RESUMEN

Zinc (Zn) is an essential micronutrient for plants. However, excess Zn is toxic to non-accumulating plants like Arabidopsis thaliana. To cope with Zn toxicity, non-accumulating plants need to keep excess Zn in the less sensitive root tissues and restrict its translocation to the vulnerable shoot tissues, a process referred to as Zn immobilization in the root. However, the mechanism underlying Zn immobilization is not fully understood. In Arabidopsis, sequestration of excess Zn to the vacuole of root cells is crucial for Zn immobilization, facilitated by distinct tonoplast-localized transporters. As some members of the aquaporin superfamily have been implicated in transporting metal ions besides polar but non-charged small molecules, we tested whether Arabidopsis thaliana tonoplast intrinsic proteins (AtTIPs) could be involved in Zn immobilization and resistance. We found that AtTIP2;2 is involved in retaining excess Zn in the root, limiting its translocation to the shoot, and facilitating its accumulation in the leaf trichome. Furthermore, when expressed in yeast, the tonoplast-localized AtTIP2;2 renders glutathione (GSH)-dependent Zn resistance to yeast cells, suggesting that AtTIP2;2 facilitates the across-tonoplast transport of GSH-Zn complexes. Our findings provide new insights into aquaporins' roles in heavy metal resistance and detoxification in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Vacuolas/metabolismo , Zinc/metabolismo , Zinc/toxicidad
15.
Environ Sci Technol ; 56(3): 2033-2043, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35006678

RESUMEN

Biological nitrogen fixation (BNF) has important environmental implications in tailings by providing bioavailable nitrogen to these habitats and sustaining ecosystem functions. Previously, chemolithotrophic diazotrophs that dominate in mine tailings were shown to use reduced sulfur (S) as the electron donor. Tailings often contain high concentrations of As(III) that might function as an alternative electron donor to fuel BNF. Here, we tested this hypothesis and report on BNF fueled by As(III) oxidation as a novel biogeochemical process in addition to BNF fueled by S. Arsenic (As)-dependent BNF was detected in cultures inoculated from As-rich tailing samples derived from the Xikuangshan mining area in China, as suggested by nitrogenase activity assays, quantitative polymerase chain reaction, and 15N2 enrichment incubations. As-dependent BNF was also active in eight other As-contaminated tailings and soils, suggesting that the potential for As-dependent BNF may be widespread in As-rich habitats. DNA-stable isotope probing identified Serratia spp. as the bacteria responsible for As-dependent BNF. Metagenomic binning indicated that the essential genes for As-dependent BNF [i.e., nitrogen fixation, As(III) oxidation, and carbon fixation] were present in Serratia-associated metagenome-assembled genomes. Over 20 Serratia genomes obtained from NCBI also contained essential genes for both As(III) oxidation and BNF (i.e., aioA and nifH), suggesting that As-dependent BNF may be a widespread metabolic trait in Serratia spp.


Asunto(s)
Arsénico , Fijación del Nitrógeno , Ecosistema , Nitrógeno/análisis , Serratia/genética , Serratia/metabolismo , Microbiología del Suelo
16.
Environ Microbiol ; 24(2): 803-818, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34081382

RESUMEN

The relative abundance of Acidobacteriia correlated positively with the concentrations of arsenic (As), mercury (Hg), chromium (Cr), copper (Cu) and other metals, suggesting their adaptation of the metal-rich environments. Metagenomic binning reconstructed 29 high-quality metagenome-assembled genomes (MAGs) associated with Acidobacteriia, providing an opportunity to study their metabolic potentials. These MAGs contained genes to transform As, Hg and Cr through oxidation, reduction, efflux and demethylation, suggesting the potential of Acidobacteriia to transform such metal(loid)s. Additionally, genes associated with alleviation of acidic and metal stress were also detected in these MAGs. Acidobacteriia may have the capabilities to resist or transform metal(loid)s in acidic metal-contaminated sites. Moreover, these genes encoding metal transformation could be also identified in the Acidobacteriia-associated MAGs from five additional metal-contaminated sites across Southwest China, as well as Acidobacteriia-associated reference genomes from the NCBI database, suggesting that the capability of metal transformation may be widespread among Acidobacteriia members. This discovery provides an understanding of metabolic potentials of the Acidobacteriia in acidic metal-rich sites.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Metagenoma , Metales/análisis , Suelo
17.
Sci Total Environ ; 818: 151826, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34822895

RESUMEN

Mining activities lead to elevated levels of antimony (Sb) and arsenic (As) in river systems, having adverse effects on the aquatic environment and human health. Microbes inhabiting river sediment can mediate the transformation of Sb and As, thus changing the toxicity and mobility of Sb and As. Compared to river sediments, natural wetlands could introduce distinct geochemical conditions, leading to the formation of different sedimentary microbial compositions between river sediments and wetland sediments. However, whether such changes in microbial composition could influence the microbially mediated geochemical behavior of Sb or As remains poorly understood. In this study, we collected samples from a river contaminated by Sb tailings and a downstream natural wetland to study the influence of microorganisms on the geochemical behavior of Sb and As after the Sb/As-contaminated river entered the natural wetland. We found that the microbial compositions in the natural wetland soil differed from those in the river sediment. The Sb/As contaminant components (Sb(III), As(III), As(V), Asexe) and nutrients (TC) were important determinants of the difference in the compositions of the microbial communities in the two environments. Taxonomic groups were differentially enriched between the river sediment and wetland soil. For example, the taxonomic groups Xanthomonadales, Clostridiales and Desulfuromonadales were important in the wetland and were likely to involve in Sb/As reduction, sulfate reduction and Fe(III) reduction, whereas Burkholderiales, Desulfobacterales, Hydrogenophilales and Rhodocyclales were important taxonomic groups in the river sediments and were reported to involve in Sb/As oxidation and sulfide oxidation. Our results suggest that microorganisms in both river sediments and natural wetlands can affect the geochemical behavior of Sb/As, but the mechanisms of action are different.


Asunto(s)
Arsénico , Microbiota , Antimonio/análisis , Arsénico/análisis , Monitoreo del Ambiente , Compuestos Férricos , Humanos , Humedales
18.
Artículo en Inglés | MEDLINE | ID: mdl-36612325

RESUMEN

Thallium (Tl) is a nonessential and toxic trace metal that is detrimental to plants, but it can be highly up-taken in green cabbage (Brassica oleracea L. var. capitata L.). It has been proven that there is a significant positive correlation between Tl and Calcium (Ca) contents in plants. However, whether Ca presents a similar role for alleviating Tl toxicity in plants remains unclear, and little is known in terms of evidence for both Ca-enhanced uptake of Tl from soils to green cabbage and associated geochemical processes. In this study, we investigated the influence of Ca in soils on Tl uptake in green cabbage and the associated geochemical process. The pot experiments were conducted in 12 mg/kg Tl(I) and 8 mg/kg Tl(III) treatments with various Ca dosages. The results showed that Ca in soils could significantly enhance Tl uptake in green cabbage, increasing 210% in content over the control group. The soluble concentrations of Tl were largely increased by 210% and 150%, respectively, in 3.0 g/kg Ca treatment, compared with the corresponding treatment without Ca addition. This was attributed to the geochemical process in which the enhanced soluble Ca probably replaces Tl held on the soil particles, releasing more soluble Tl into the soil solution. More interestingly, the bioconcentration factor of the leaves and whole plant for the 2.0, 2.5, 3.0 g/kg Ca dosage group were greatly higher than for the non-Ca treatment, which could reach 207%, implying the addition of Ca can improve the ability of green cabbage to transfer Tl from the stems to the leaves. Furthermore, the pH values dropped with the increasing Ca concentration treatment, and the lower pH in soils also increased Tl mobilization, which resulted in Tl accumulation in green cabbage. Therefore, this work not only informs the improvement of agricultural safety management practices for the farming of crops in Tl-polluted and high-Ca-content areas, but also provides technical support for the exploitation of Ca-assisted phytoextraction technology.


Asunto(s)
Brassica , Contaminantes del Suelo , Talio/análisis , Calcio/metabolismo , Contaminantes del Suelo/análisis , Brassica/química , Calcio de la Dieta , Suelo/química , Intoxicación por Metales Pesados , Plantas/metabolismo
19.
Plant Signal Behav ; 16(12): 1991686, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34709126

RESUMEN

Aquaporins (AQPs) are channel proteins involved in transporting a variety of substrates. It has been proposed that the constriction regions in the central pores of the AQP channels play a crucial role in determining transport substrates and activities of AQPs. Our previous results suggest that AtNIP1;2, a member of the AQP superfamily in Arabidopsis, facilitates aluminum transport across the plasma membrane. However, the functions of the constriction regions in AtNIP1;2-mediated transport activities are unclear. This study reports that residue substitutions of the constriction regions affect AtNIP1;2-mediated aluminum uptake, demonstrating the critical roles of the constriction regions for transport activities. Furthermore, a constriction region that partially or wholly mimics AtNIP5;1, a demonstrated boric-acid transporter, could not render the boric-acid transport activity to AtNIP1;2. Therefore, besides the constriction regions, other structural features are also involved in determining the nature of AtNIP1;2's transport activities.Abbreviations: AIAR: alanine-isoleucine-alanine-arginine; AIGR: alanine-isoleucine-glycine- arginine; AQP: aquaporin; Al-Mal: aluminum-malate; ar/R: aromatic/arginine; AVAR: alanine-valine-alanine-arginine; CK: control; H: helical domain; ICP-MS: inductively coupled plasma mass spectrometry; LA - LE: inter-helical loops A to E; NIP: nodulin 26-like intrinsic protein; NPA: asparagine-proline-alanine; NPG: asparagine-proline- glycine; NPS: asparagine-proline-Serine; NPV: asparagine-proline-valine; ORF: open reading frame; PIP: plasma membrane intrinsic proteins; SIP: small basic intrinsic proteins; TM: transmembrane helices; WIAR: tryptophan-isoleucine-alanine-arginine; WVAR: tryptophan-valine-alanine-arginine; WVGR: tryptophan-valine-glycine- arginine.


Asunto(s)
Acuaporinas , Proteínas de Arabidopsis , Arabidopsis , Aluminio , Acuaporinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arginina/metabolismo , Isoleucina
20.
Environ Int ; 153: 106522, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33812041

RESUMEN

Microorganisms can mediate arsenic (As) and antimony (Sb) transformation and thus change the As and Sb toxicity and mobility. The influence of As and Sb on the innate microbiome has been extensively characterized. However, how microbial metabolic potentials are influenced by the As and Sb co-contamination is still ambiguous. In this study, we selected two contrasting sites located in the Shimen realgar mine, the largest realgar mine in Asia, to explore the adaptability and response of the soil microbiome to As and Sb co-contamination and the impact of co-contamination on microbial metabolic potentials. It is observed that the geochemical parameters, including the As and Sb fractions, were the driving forces that reshaped the community composition and metabolic potentials. Bacteria associated with Bradyrhizobium, Nocardioides, Sphingomonas, Burkholderia, and Streptomyces were predicted to be tolerant to high concentrations of As and Sb. Co-occurrence network analysis revealed that the genes related to C fixation, nitrate/nitrite reduction, N fixation, and sulfate reduction were positively correlated with the As and Sb fractions, suggesting that As and Sb biogeochemical cycling may interact with and benefit from C, N, and S cycling. The results suggest that As and Sb co-contamination not only influences As-related genes, but also influences other genes correlated with microbial C, N, and S cycling.


Asunto(s)
Arsénico , Microbiota , Contaminantes del Suelo , Antimonio/toxicidad , Arsénico/análisis , Arsénico/toxicidad , Asia , Carbono , Monitoreo del Ambiente , Nitrógeno , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Azufre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...