Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 167: 115599, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783150

RESUMEN

B-lymphocytopenia among myelosuppression is the most intractable side effect of chemotherapy. Here, we investigated ways to alleviate 5-fluorouracil-caused stress hematopoietic impairment. We found that intraperitoneally injected ASP (Angelica sinensis polysaccharides) (100 mg/kg per day), one main active ingredient of Angelica sinensis, for consecutive 7 days, significantly recovered mouse bone marrow pro-B and pre-B cells, reversed the capacity of CFU-PreB colony forming, thus alleviating B cell reduction in the spleen and peripheral blood, as well as ameliorating immunoglobin from spleen and serum. The mechanism is related to the protective effects of ASP on IL-7 producing cells, including perivascular Leptin+ and CXCL12+ mesenchymal stem and progenitor cells (MSPCs), thus promoting IL-7 production, and activating IL-7R-mediated STAT5, PI3K-AKT signaling, including survival signals and EBF1, PAX5 transcription factor expression. Additionally, ASP's IL-7 promoting effect was demonstrated to be associated with maintaining osteogenesis/adipogenesis balance of MSPCs via the NRF2 antioxidant pathway. Collectively, our findings indicate that ASP reverse stress B-lymphocytopenia via improving Nrf2 signaling, promoting IL-7 production in MSPCs, and subsequently maintaining survival, proliferation, and differentiation of B cell progenitors, which may represent a promising therapeutic strategy.


Asunto(s)
Angelica sinensis , Linfopenia , Ratones , Animales , Interleucina-7/farmacología , Fluorouracilo/farmacología , Factor 2 Relacionado con NF-E2 , Fosfatidilinositol 3-Quinasas , Estrés Oxidativo , Células Madre , Polisacáridos/farmacología
2.
Eur J Neurosci ; 58(9): 4084-4101, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37753701

RESUMEN

With the ageing of society's population, neurodegenerative diseases have become an important factor affecting the quality of life and mortality in the elderly. Since its physiopathological processes are complex and the authorized medications have recently been shown to have several adverse effects, the development of safe and efficient medications is urgently needed. In this study, we looked at how ginsenoside Rg1 works to postpone neural stem cell ageing and brain ageing, giving it a solid scientific foundation for use as a therapeutic therapy for neurodegenerative diseases.


Asunto(s)
Ginsenósidos , Células-Madre Neurales , Enfermedades Neurodegenerativas , Humanos , Anciano , Galactosa/metabolismo , Galactosa/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sirtuina 1/metabolismo , Calidad de Vida , Ginsenósidos/metabolismo , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Células-Madre Neurales/metabolismo , Enfermedades Neurodegenerativas/metabolismo
3.
Pharm Biol ; 61(1): 768-778, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37148130

RESUMEN

CONTEXT: 5-Fluorouracil (5-FU)-injured stromal cells may cause chronic bone marrow suppression; however, the underlying mechanism remains unclear. Angelica sinensis polysaccharide (ASP), the main biologically active ingredient of the Chinese herb, Angelica sinensis (Oliv.) Diels (Apiaceae), may enrich the blood and promote antioxidation. OBJECTIVE: This study investigated the protective antioxidative effects of ASP on perivascular mesenchymal progenitors (PMPs) and their interactions with hematopoietic cells. MATERIALS AND METHODS: PMPs were dissociated from C57BL/6 mouse femur and tibia and were subsequently divided into the control, ASP (0.1 g/L), 5-FU (0.025 g/L), and 5-FU + ASP (pre-treatment with 0.1 g/L ASP for 6 h, together with 0.025 g/L 5-FU) then cultured for 48 h. Hematopoietic cells were co-cultured on these feeder layers for 24 h. Cell proliferation, senescence, apoptosis, and oxidative indices were detected, along with stromal osteogenic and adipogenic differentiation potentials. Intercellular and intracellular signaling was analyzed by real-time quantitative reverse transcription polymerase chain reaction and Western blotting. RESULTS: ASP ameliorated the reactive oxygen species production/scavenge balance in PMPs; improved osteogenic differentiation; increased SCF, CXCL12, VLA-4/VCAM-1, ICAM-1/LFA1, and TPO/MPL, Ang-1/Tie-2 gene expression. Further, the ASP-treated feeder layer alleviated hematopoietic cells senescence (from 21.9 ± 1.47 to 12.1 ± 1.13); decreased P53, P21, p-GSK-3ß, ß-catenin and cyclin-D1 protein expression, and increased glycogen synthase kinase (GSK)-3ß protein expression in co-cultured hematopoietic cells. DISCUSSION AND CONCLUSIONS: ASP delayed oxidative stress-induced premature senescence of 5-FU-treated feeder co-cultured hematopoietic cells via down-regulation of overactivated Wnt/ß-catenin signaling. These findings provide a new strategy for alleviating myelosuppressive stress.


Asunto(s)
Angelica sinensis , Células Madre Mesenquimatosas , Ratones , Animales , beta Catenina , Glucógeno Sintasa Quinasa 3 beta , Osteogénesis , Ratones Endogámicos C57BL , Estrés Oxidativo , Antioxidantes/farmacología , Vía de Señalización Wnt , Fluorouracilo/toxicidad , Polisacáridos/farmacología
4.
Redox Rep ; 28(1): 2206197, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37102430

RESUMEN

ABSTRACTObjectives: High reactive oxygen species (ROS) levels lead to cell death, and the testes are among the most vulnerable organs to oxidative damage. Rg1, an active ingredient extracted from the natural medicine ginseng, has potential anti-inflammatory, antioxidant and antiapoptotic properties. Our previous studies showed that Rg1 can effectively improve spermatogenic function in mice, but the specific mechanism remains unclear. The purpose of this study was to investigate the effect of Rg1 on oxidative stress and spermatogonium apoptosis in D-gal-induced testicular toxicity and elucidate the associated mechanism.Methods: Male C57BL/6 mice at 6-8 weeks of age were intraperitoneally injected with D-gal (200 mg/kg) for 42 days to establish a testicular injury model, and on day 16, 40 mg/kg Rg1-rich saline was injected intraperitoneally. Concurrently, we established an in vitro model of D-gal-damaged spermatogonia, which was treated with Rg1.Results: We found that treatment with the ginsenoside Rg1 reduced D-gal-induced oxidative stress and spermatogonium apoptosis in vivo and in vitro. Mechanistically, we found that Rg1 activated Akt/bad signaling and reduced D-gal-induced spermatogonium apoptosis.Discussion: We provide evidence showing that the antioxidant effect of Rg1 is mediated by the Akt/GSK-3ß/NRF2 axis. Based on these findings, we consider Rg1 a potential treatment for testicular oxidative damage.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Testículo , Animales , Masculino , Ratones , Antioxidantes/farmacología , Antioxidantes/metabolismo , Apoptosis , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/farmacología , Ratones Endogámicos C57BL , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Espermatogonias/metabolismo , Testículo/metabolismo
5.
Biomed Pharmacother ; 162: 114602, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37018993

RESUMEN

Angelica Sinensis polysaccharide (ASP), the main active component of Angelica sinensis, possesses antioxidative and anti-apoptotic properties. In this study, we have investigated the antagonistic effect of ASP on 5-FU-induced injury of mouse spleen in vivo and splenocytes in vitro, and its possible mechanism. Our results showed that ASP inhibited 5-FU-induced decreases in spleen weight and organ index in mice, restored the number of peripheral blood leukocytes and lymphocytes, repaired spleen structure disorder and functional impairment, rescued serum IL-2, IL-6, and IFN-γ levels, and relieved 5-FU-induced mitochondrial swelling, reduced the oxidant accumulation including MDA and ROS, whereas increasing the activities of GSH, SOD and CAT. The mechanism may be related to ASP downregulation of Keap1 protein expression thus motivating the nuclear translocation of Nrf2. Furthermore, ASP alleviated the apoptosis of spleens in vivo and splenocytes in vitro, and reactivated PI3K / AKT signalling. In conclusion, the protective effect of ASP on spleens and splenocytes may be related to the reduction of oxidative stress and apoptosis via reactivation of Nrf2 and PI3K/AKT pathways. This study has provided a new protective agent for minimizing the spleen injury caused by 5-FU and a new idea for improving the prognosis of chemotherapy patients.


Asunto(s)
Angelica sinensis , Ratones , Animales , Angelica sinensis/química , Proteína 1 Asociada A ECH Tipo Kelch , Bazo , Fluorouracilo/farmacología , Factor 2 Relacionado con NF-E2 , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Estrés Oxidativo , Apoptosis , Polisacáridos/farmacología
6.
Sci Rep ; 12(1): 17071, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224224

RESUMEN

Hematopoietic stem cells show biological manifestations of aging, diminished hematopoietic function and abnormal differentiation, which can lead to leukemia. It is therefore important to explore the mechanism underlying hematopoietic stem cell aging to develop strategies for delaying the process. Our evaluations revealed that the number of bone marrow hematopoietic cells (BMHCs) started to decrease significantly after 45 years of age, and the number of senescent BMHCs, as determined by senescence-associated beta-galactosidase staining, gradually increased with age. In addition, BMHCs from individuals over 45 years of age presented with notably reduced proliferative capacity, increased G1-phase cell cycle arrest, and significantly decreased generation of mixed colony forming units, which suggests that BMHCs enter senescence during middle age. Furthermore, we observed significantly lower antioxidant capacity and a significant increase in oxidative damage products, a gradual increase in the expression of senescence-associated proteins and genes, and a gradual decrease in the expression of cell cycle related proteins in BMHCs after middle age. Taken together, these findings offer both a theoretical and experimental basis for better understanding of the senescence progression of BMHCs and the optimal timing for anti-senescence drug interventions in clinical practice.


Asunto(s)
Médula Ósea , Senescencia Celular , Antioxidantes/metabolismo , Médula Ósea/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Células Madre Hematopoyéticas/metabolismo , Humanos , beta-Galactosidasa/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-36267094

RESUMEN

Background: An important feature of aging cells is the gradual loss of physiological integrity. As aging progresses, MSCs change preferring to differentiate toward adipocytes rather than osteoblasts. Oxidative stress accumulation is an important factor in age-related bone loss. Many experiments have demonstrated the good therapeutic effect of Ginsenoside (Rg1) on oxidative stress injury. In this study, we investigated the effect of Rg1 on the osteogenic-adipogenic differentiation balance of bone marrow mesenchymal stem cells (BMMSC). Objective: To analyze the potential application value of Rg1 in the treatment of senile osteoporosis. Methods: BMMSCs were isolated from healthy donors of different ages and identified based on isotype and by multi-differentiation induction. Rg1 was used to treat BMMSCs, The differentiation propensity was analyzed by induction of differentiation assay. Antioxidant capacity of BMMSCs as measured by oxidative stress product assay Related mechanism studies were confirmed by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), immunofluorescence, western blotting, and inhibitor treatment. Moreover, Observation of the effects of Rg1 on aging BMMSCs under in vivo conditions by treatment of aged mice with Rg1 injections. Results: Rg1 treatment rescued age-induced switch of BMMSCs differentiation fate in vitro. In elderly people, Rg1 markedly increased osteogenic differentiation of BMMSCs by decreasing oxidative stress, while inhibiting adipogenic differentiation. However, this effect was abolished in BMMSCs by an Nrf2-inhibitor. Notably, aging mice showed a reduction in adipocyte distribution in the bone marrow and a decrease in oxidative stress products after a 3-month period of Rg1 treatment. Conclusion: We have uncovered a novel function for Rg1 that involves attenuating bone loss via Nrf2 antioxidant signaling, which in turn may potentially be utilized as a therapeutic agent for improving osteogenic differentiation in aging BMMSCs.

8.
Front Oncol ; 11: 720620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485154

RESUMEN

Oxidative stress induced by chemotherapeutic agents causes hepatotoxicity. 5-Fluorouracil (5-FU) has been found to have a variety of side effects, but its toxic effect on the liver and the mechanism are still unclear. Angelica polysaccharide (ASP), the main active ingredient of Dang Gui, has antioxidative stress effects. In this study, we investigated the antagonistic effects of ASP on 5-FU-induced injury in the mouse liver and human normal liver cell line MIHA and the possible mechanism. Our results show that ASP inhibited 5-FU-induced the decrease in Bcl-2 protein and the increase in Bax protein. ASP alleviated 5-FU-induced the increase in alanine aminotransferase (ALT), triglyceride (TG), and aspartate aminotransferase (AST) content; hepatic steatosis; and liver fibrosis. ASP restored 5-FU-induced swelling of mitochondria and the endoplasmic reticulum. 5-FU promoted the expression of Keap1 and increased the binding to NF-E2-related factor 2 (Nrf2) to reduce the nuclear translocation of Nrf2, thereby weakening the transcriptional activity of Nrf2 to inhibit the expression of HO-1; reducing the activity of GSH, SOD, and CAT to increase ROS content; and aggravating DNA damage (indicated by the increase in 8-OHdG). However, ASP reversed these reactions. In conclusion, ASP attenuated the 5-FU-induced Nrf2 pathway barrier to reduce oxidative stress injury and thereby inhibit the disorder of lipid anabolism and apoptosis. The study provides a new protectant for reducing the hepatic toxicity caused by 5-FU and a novel target for treating the liver injury.

9.
Free Radic Biol Med ; 174: 182-194, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34364981

RESUMEN

Senescence limits the characteristics and functionality of mesenchymal stem cells (MSCs), thereby severely restricting their application in tissue engineering. Here, we investigated ways to prevent MSCs from entering a state of senescence. We found that Rg1, an extract of natural ginseng, can reduce the expression of senescence markers in cultured cells in vitro and in various tissues in vivo. Simultaneously, ginsenoside Rg1 improved the antioxidant capacity of cells, and the senescence-inhibiting and antioxidant effect of Rg1 were associated with the activation of the nuclear factor E2-related factor 2 (NRF2) signaling pathway. Furthermore, Rg1 may activate the NRF2 pathway by increasing the interaction between P62 and KEAP1through P62 upregulation and AKT activation. Taken together, our findings indicate that Rg1 prevents cell senescence via NRF2 and AKT, and activation of AKT or NRF2 may thus represent therapeutic targets for preventing cell senescence.


Asunto(s)
Células Madre Mesenquimatosas , Factor 2 Relacionado con NF-E2 , Senescencia Celular , Ginsenósidos , Células Madre Mesenquimatosas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
10.
Life Sci ; 254: 117776, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32437790

RESUMEN

AIMS: Rg1 is the most active component of traditional Chinese medicine ginseng, having anti-aging and anti-oxidative stress features in multiple organs. Cellular senescence of hepatocytes is involved in the progression of a wide spectrum of chronic liver diseases. In this study, we investigated the potential benefits and mechanism of action of Rg1 on aging-driven chronic liver diseases. MATERIALS AND METHODS: A total of 40 male C57BL/6 mice were randomly divided into four groups: control group; Rg1 group; Rg1+d-gal group; and d-gal group. Blood and liver tissue samples were collected for determination of liver function, biochemical and molecular markers, as well as histopathological investigation. KEY FINDINGS: Rg1 played an anti-aging role in reversing d-galactose induced increase in senescence-associated SA-ß-gal staining and p53, p21 protein in hepatocytes of mice and sustained mitochondria homeostasis. Meanwhile, Rg1 protected livers from d-galactose caused abnormal elevation of ALT and AST in serum, hepatic steatosis, reduction in hepatic glucose production, hydrogenic degeneration, inflammatory phenomena including senescence-associated secretory phenotype (SASP) IL-1ß, IL-6, MCP-1 elevation and lymphocyte infiltration. Furthermore, Rg1 suppressed drastic elevation in FOXO1 phosphorylation resulting in maintaining FOXO1 protein level in the liver after d-galactose treatment, followed by FOXO1 targeted antioxidase SOD and CAT significant up-regulation concurrent with marked decrease in lipid peroxidation marker MDA. SIGNIFICANCE: Rg1 exerts pharmaceutic effects of maintaining FOXO1 activity in liver, which enhances anti-oxidation potential of Rg1 to ameliorate SASP and to inhibit inflammation, also promotes metabolic homeostasis, and thus protects livers from senescence induced fatty liver disease. The study provides a potential therapeutic strategy for alleviating chronic liver pathology.


Asunto(s)
Hígado Graso/metabolismo , Hígado Graso/prevención & control , Proteína Forkhead Box O1/metabolismo , Ginsenósidos/farmacología , Animales , Antioxidantes/farmacología , Senescencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Galactosa/farmacología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Factores de Transcripción/metabolismo
11.
Neurochem Int ; 122: 149-156, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30196146

RESUMEN

The incidence of neurodegenerative diseases is severely increasing with the aging. It has been proposed that NSCs (neural stem cells) help to control aging, but the mechanisms responsible remain unclear. Angelica polysaccharide is an active ingredient of Angelica sinensis in traditional Chinese medicine, which possesses versatile pharmacological activities including anti-oxidative and anti-aging effects. In this study, D-gal (D-galactose) was used to construct an aging model of Nestin-GFP transgenic mice brain tissues and NSCs. Mouse model was subcutaneously injected with D-gal, as we observed that mice consistently displayed acceleration of aging-like behavior change, energy metabolism decreased, the expression of aging-related genes was up-regulated. Conversely, aging retardation was achieved in Nestin-GFP mice Induced by D-gal that was locally injected with ASP (Angelica polysaccharide). Mechanistically, we isolated and cultured NSCs in vitro. ASP protected NSCs by increasing the cell proliferation; decreasing the number of SA-ß-gal stained neurons; increasing the activity of SOD(superoxide dismutase) and T-AOC(total antioxidant capacity), decreasing the content of MDA(malondialdehyde); decreasing the levels of IL-1b,IL-6,TNF-a and ROS; and down-regulated the expression of cellular senescence associated genes p53, p21 in the aging NSCs. In conclusion, ASP can delay aging speed by protecting NSCs and promote neurogenesis by enhancing the antioxidant and anti-inflammatory capacity, up-regulation of p53/p21 signaling pathway. As to provide theoretical basis for treatment for brain aging related diseases, add new scientific connotation for "qi and blood theory" and "supplement blood and delay aging" of Traditional Chinese Medicine.


Asunto(s)
Encéfalo/efectos de los fármacos , Galactosa/farmacología , Nestina/metabolismo , Polisacáridos/farmacología , Angelica sinensis/efectos de los fármacos , Animales , Antioxidantes/farmacología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Masculino , Malondialdehído/metabolismo , Ratones Transgénicos , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
12.
Int J Mol Sci ; 18(11)2017 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-29143796

RESUMEN

Myelosuppression is the most common complication of chemotherapy. Decline of self-renewal capacity and stress-induced premature senescence (SIPS) of hematopoietic stem cells (HSCs) induced by chemotherapeutic agents may be the cause of long-term myelosuppression after chemotherapy. Whether the mechanism of SIPS of hematopoietic cells relates to chemotherapeutic injury occurred in hematopoietic microenvironment (HM) is still not well elucidated. This study explored the protective effect of Angelica sinensis polysaccharide (ASP), an acetone extract polysaccharide found as the major effective ingredients of a traditional Chinese medicinal herb named Chinese Angelica (Dong Quai), on oxidative damage of homo sapiens bone marrow/stroma cell line (HS-5) caused by 5-fluorouracil (5-FU), and the effect of ASP relieving oxidative stress in HM on SIPS of hematopoietic cells. Tumor-suppressive doses of 5-FU inhibited the growth of HS-5 in a dose-dependent and time-dependent manner. 5-FU induced HS-5 apoptosis and also accumulated cellular hallmarks of senescence including cell cycle arrest and typical senescence-associated ß-galactosidase positive staining. The intracellular reactive oxygen species (ROS) was increased in 5-FU treated HS-5 cells and coinstantaneous with attenuated antioxidant capacity marked by superoxide dismutase and glutathione peroxidase. Oxidative stress initiated DNA damage indicated by increased γH2AX and 8-OHdG. Oxidative damage of HS-5 cells resulted in declined hematopoietic stimulating factors including stem cell factor (SCF), stromal cell-derived factor (SDF), and granulocyte-macrophage colony-stimulating factor (GM-CSF), however, elevated inflammatory chemokines such as RANTES. In addition, gap junction channel protein expression and mediated intercellular communications were attenuated after 5-FU treatment. Significantly, co-culture on 5-FU treated HS-5 feeder layer resulted in less quantity of human umbilical cord blood-derived hematopoietic cells and CD34⁺ hematopoietic stem/progenitor cells (HSPCs), and SIPS of hematopoietic cells. However, it is noteworthy that ASP ameliorated SIPS of hematopoietic cells by the mechanism of protecting bone marrow stromal cells from chemotherapeutic injury via mitigating oxidative damage of stromal cells and improving their hematopoietic function. This study provides a new strategy to alleviate the complication of conventional cancer therapy using chemotherapeutic agents.


Asunto(s)
Angelica sinensis , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Angelica sinensis/química , Angelica sinensis/metabolismo , Biomarcadores , Senescencia Celular/efectos de los fármacos , Daño del ADN , Fluorouracilo/farmacología , Humanos , Sustancias Protectoras , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA