Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.651
Filtrar
1.
Cancer Cell Int ; 24(1): 159, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714991

RESUMEN

BACKGROUND: Single nuclear polymorphisms (SNPs) have been published to be correlated with multiple diseases. Transcription Factor 21 (TCF21) is a critical transcription factor involved in various types of cancers. However, the association of TCF21 genetic polymorphisms with gastric cancer (GC) susceptibility and prognosis remains unclear. METHODS: A case-control study comprising 890 patients diagnosed with GC and an equal number of cancer-free controls was conducted. After rigorous statistical analysis, molecular experiments were carried out to elucidate the functional significance of the SNPs in the context of GC. RESULTS: TCF21 rs2327430 (OR = 0.78, P = 0.026) provides protection against GC, while rs4896011 (OR = 1.39, P = 0.005) exhibit significant associations with GC risk. Furthermore, patients with the (TC + CC) genotype of rs2327430 demonstrate a relatively favorable prognosis (OR = 0.47, P = 0.012). Mechanistically, chromatin immunoprecipitation assay and luciferase reporter assay revealed that the C allele of rs2327430 disrupts the binding of Transcription Factor AP-2 Alpha (TFAP2A) to the promoter region of TCF21, resulting in increased expression of TCF21 and inhibition of malignant behaviors in GC cells. CONCLUSION: Our findings highlight the significant role of TCF21 SNPs in both the risk and prognosis of GC and provide valuable insights into the underlying molecular mechanisms. Specifically, the disruptive effect of rs2327430 on TCF21 expression and its ability to modulate malignant cell behaviors suggest that rs2327430 may serve as a potential predictive marker for GC risk and prognosis.

2.
Chem Sci ; 15(18): 6833-6841, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38725503

RESUMEN

The understanding of electron transfer pathways and orbital interactions between analytes and adsorption sites in gas-sensitive studies, especially at the atomic level, is currently limited. Herein, we have designed eight isoreticular catechol-metalloporphyrin scaffolds, FeTCP-M and InTCP-M (TCP = 5,10,15,20-tetrakis-catechol-porphyrin, M = Fe, Co, Ni and Zn) with adjustable charge transfer schemes in the coordination microenvironment and precise tuning of orbital interactions between analytes and adsorption sites, which can be used as models for exploring the influence of these factors on gas sensing. Our experimental findings indicate that the sensitivity and selectivity can be modulated using the type of metals in the metal-catechol chains (which regulate the electron transfer routes) and the metalloporphyrin rings (which fine-tune the orbital interactions between analytes and adsorption sites). Among the isostructures, InTCP-Co demonstrates the highest response and selectivity to NO2 under visible light irradiation, which could be attributed to the more favorable transfer pathway of charge carriers in the coordination microenvironment under visible light illumination, as well as the better electron spin state compatibility, higher orbital overlap and orbital symmetry matching between the N-2s2pz hybrid orbital of NO2 and the Co-3dz2 orbital of InTCP-Co.

3.
Front Pharmacol ; 15: 1270073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725662

RESUMEN

The human eye is susceptible to various disorders that affect its structure or function, including glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). Mitochondrial dysfunction has been identified as a critical factor in the pathogenesis and progression of eye disorders, making it a potential therapeutic target in the clinic. Natural products have been used in traditional medicine for centuries and continue to play a significant role in modern drug development and clinical therapeutics. Recently, there has been a surge in research exploring the efficacy of natural products in treating eye disorders and their underlying physiological mechanisms. This review aims to discuss the involvement of mitochondrial dysfunction in eye disorders and summarize the recent advances in the application of natural products targeting mitochondria. In addition, we describe the future perspective and challenges in the development of mitochondria-targeting natural products.

4.
Immune Netw ; 24(2): e3, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38725674

RESUMEN

Cigarette smoke extract (CSE)-treated mouse airway epithelial cells (MAECs)-derived exosomes accelerate the progression of chronic obstructive pulmonary disease (COPD) by upregulating triggering receptor expressed on myeloid cells 1 (TREM-1); however, the specific mechanism remains unclear. We aimed to explore the potential mechanisms of CSE-treated MAECs-derived exosomes on M1 macrophage polarization and pyroptosis in COPD. In vitro, exosomes were extracted from CSE-treated MAECs, followed by co-culture with macrophages. In vivo, mice exposed to cigarette smoke (CS) to induce COPD, followed by injection or/and intranasal instillation with oe-TREM-1 lentivirus. Lung function and pathological changes were evaluated. CD68+ cell number and the levels of iNOS, TNF-α, IL-1ß (M1 macrophage marker), and pyroptosis-related proteins (NOD-like receptor family pyrin domain containing 3, apoptosis-associated speck-like protein containing a caspase-1 recruitment domain, caspase-1, cleaved-caspase-1, gasdermin D [GSDMD], and GSDMD-N) were examined. The expression of maternally expressed gene 3 (MEG3), spleen focus forming virus proviral integration oncogene (SPI1), methyltransferase 3 (METTL3), and TREM-1 was detected and the binding relationships among them were verified. MEG3 increased N6-methyladenosine methylation of TREM-1 by recruiting SPI1 to activate METTL3. Overexpression of TREM-1 or METTL3 negated the alleviative effects of MEG3 inhibition on M1 polarization and pyroptosis. In mice exposed to CS, EXO-CSE further aggravated lung injury, M1 polarization, and pyroptosis, which were reversed by MEG3 inhibition. TREM-1 overexpression negated the palliative effects of MEG3 inhibition on COPD mouse lung injury. Collectively, CSE-treated MAECs-derived exosomal long non-coding RNA MEG3 may expedite M1 macrophage polarization and pyroptosis in COPD via the SPI1/METTL3/TREM-1 axis.

5.
PLoS Med ; 21(5): e1004389, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728364

RESUMEN

BACKGROUND: It remains unclear whether intensification of the chemotherapy backbone in tandem with an anti-EGFR can confer superior clinical outcomes in a cohort of RAS/BRAF wild-type colorectal cancer (CRC) patients with initially unresectable colorectal liver metastases (CRLM). To that end, we sought to comparatively evaluate the efficacy and safety of cetuximab plus FOLFOXIRI (triplet arm) versus cetuximab plus FOLFOX (doublet arm) as a conversion regimen (i.e., unresectable to resectable) in CRC patients with unresectable CRLM. METHODS AND FINDINGS: This open-label, randomized clinical trial was conducted from April 2018 to December 2022 in 7 medical centers across China, enrolling 146 RAS/BRAF wild-type CRC patients with initially unresectable CRLM. A stratified blocked randomization method was utilized to assign patients (1:1) to either the cetuximab plus FOLFOXIRI (n = 72) or cetuximab plus FOLFOX (n = 74) treatment arms. Stratification factors were tumor location (left versus right) and resectability (technically unresectable versus ≥5 metastases). The primary outcome was the objective response rate (ORR). Secondary outcomes included the median depth of tumor response (DpR), early tumor shrinkage (ETS), R0 resection rate, progression-free survival (PFS), overall survival (not mature at the time of analysis), and safety profile. Radiological tumor evaluations were conducted by radiologists blinded to the group allocation. Primary efficacy analyses were conducted based on the intention-to-treat population, while safety analyses were performed on patients who received at least 1 line of chemotherapy. A total of 14 patients (9.6%) were lost to follow-up (9 in the doublet arm and 5 in the triplet arm). The ORR was comparable following adjustment for stratification factors, with 84.7% versus 79.7% in the triplet and doublet arms, respectively (odds ratio [OR] 0.70; 95% confidence intervals [CI] [0.30, 1.67], Chi-square p = 0.42). Moreover, the ETS rate showed no significant difference between the triplet and doublet arms (80.6% (58/72) versus 77.0% (57/74), OR 0.82, 95% CI [0.37, 1.83], Chi-square p = 0.63). Although median DpR was higher in the triplet therapy group (59.6%, interquartile range [IQR], [50.0, 69.7] versus 55.0%, IQR [42.8, 63.8], Mann-Whitney p = 0.039), the R0/R1 resection rate with or without radiofrequency ablation/stereotactic body radiation therapy was comparable with 54.2% (39/72) of patients in the triplet arm versus 52.7% (39/74) in the doublet arm. At a median follow-up of 26.2 months (IQR [12.8, 40.5]), the median PFS was 11.8 months in the triplet arm versus 13.4 months in the doublet arm (hazard ratio [HR] 0.74, 95% CI [0.50, 1.11], Log-rank p = 0.14). Grade ≥ 3 events were reported in 47.2% (35/74) of patients in the doublet arm and 55.9% (38/68) of patients in the triplet arm. The triplet arm was associated with a higher incidence of grade ≥ 3 neutropenia (44.1% versus 27.0%, p = 0.03) and diarrhea (5.9% versus 0%, p = 0.03). The primary limitations of the study encompass the inherent bias in subjective surgical decisions regarding resection feasibility, as well as the lack of a centralized assessment for ORR and resection. CONCLUSIONS: The combination of cetuximab with FOLFOXIRI did not significantly improve ORR compared to cetuximab plus FOLFOX. Despite achieving an enhanced DpR, this improvement did not translate into improved R0 resection rates or PFS. Moreover, the triplet arm was associated with an increase in treatment-related toxicity. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03493048.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Camptotecina , Cetuximab , Neoplasias Colorrectales , Fluorouracilo , Leucovorina , Neoplasias Hepáticas , Compuestos Organoplatinos , Proteínas Proto-Oncogénicas B-raf , Humanos , Cetuximab/administración & dosificación , Cetuximab/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Masculino , Persona de Mediana Edad , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/tratamiento farmacológico , Femenino , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Leucovorina/uso terapéutico , Leucovorina/administración & dosificación , Fluorouracilo/uso terapéutico , Fluorouracilo/administración & dosificación , Compuestos Organoplatinos/uso terapéutico , Compuestos Organoplatinos/administración & dosificación , Proteínas Proto-Oncogénicas B-raf/genética , Anciano , Adulto , Camptotecina/análogos & derivados , Camptotecina/uso terapéutico , Camptotecina/administración & dosificación , Resultado del Tratamiento , Proteínas ras/genética
6.
Exp Eye Res ; 244: 109919, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729254

RESUMEN

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.

7.
Biotechnol Lett ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733437

RESUMEN

Chiral epichlorohydrin (ECH) is an attractive intermediate for chiral pharmaceuticals and chemicals preparation. The asymmetric synthesis of chiral ECH using 1,3-dicholoro-2-propanol (1,3-DCP) catalyzed by a haloalcohol dehalogenase (HHDH) was considered as a feasible approach. However, the reverse ring opening reaction caused low optical purity of chiral ECH, thus severely restricts the industrial application of HHDHs. In the present study, a novel selective conformation adjustment strategy was developed with an engineered HheCPS to regulate the kinetic parameters of the forward and reverse reactions, based on site saturation mutation and molecular simulation analysis. The HheCPS mutant E85P was constructed with a markable change in the conformation of (S)-ECH in the substrate pocket and a slight impact on the interaction between 1,3-DCP and the enzyme, which resulted in the kinetic deceleration of the reverse reactions. Compared with HheCPS, the catalytic efficiency (kcat(S)-ECH/Km(S)-ECH) of the reversed reaction dropped to 0.23-fold (from 0.13 to 0.03 mM-1 s-1), while the catalytic efficiency (kcat(1,3-DCP)/Km(1,3-DCP)) of the forward reaction only reduced from 0.83 to 0.71 mM-1 s-1. With 40 mM 1,3-DCP as substrate, HheCPS E85P catalyzed the synthesis of (S)-ECH with the yield up to 55.35% and the e.e. increased from 92.54 to >99%. Our work provided an effective approach for understanding the stereoselective catalytic mechanism as well as the green manufacturing of chiral epoxides.

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167220, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718847

RESUMEN

Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma.


Asunto(s)
Aminoácidos de Cadena Ramificada , Apoptosis , GTP Fosfohidrolasas , Glioblastoma , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Glioblastoma/metabolismo , Glioblastoma/patología , GTP Fosfohidrolasas/metabolismo , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Línea Celular Tumoral , Ratones , Proteínas Mitocondriales/metabolismo , Ubiquitina/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Ubiquitinación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
9.
J Int Med Res ; 52(5): 3000605241247696, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698505

RESUMEN

OBJECTIVE: To compare an Extreme Gradient Boosting (XGboost) model with a multivariable logistic regression (LR) model for their ability to predict sepsis after extremely severe burns. METHODS: For this observational study, patient demographic and clinical information were collected from medical records. The two models were evaluated using area under curve (AUC) of the receiver operating characteristic (ROC) curve. RESULTS: Of the 103 eligible patients with extremely severe burns, 20 (19%) were in the sepsis group, and 83 (81%) in the non-sepsis group. The LR model showed that age, admission time, body index (BI), fibrinogen, and neutrophil to lymphocyte ratio (NLR) were risk factors for sepsis. Comparing AUC of the ROC curves, the XGboost model had a higher predictive performance (0.91) than the LR model (0.88). The SHAP visualization tool indicated fibrinogen, NLR, BI, and age were important features of sepsis in patients with extremely severe burns. CONCLUSIONS: The XGboost model was superior to the LR model in predictive efficacy. Results suggest that, fibrinogen, NLR, BI, and age were correlated with sepsis after extremely severe burns.


Asunto(s)
Quemaduras , Curva ROC , Sepsis , Humanos , Sepsis/etiología , Sepsis/sangre , Sepsis/complicaciones , Sepsis/diagnóstico , Masculino , Femenino , Quemaduras/complicaciones , Modelos Logísticos , Persona de Mediana Edad , Adulto , Factores de Riesgo , Neutrófilos/inmunología , Fibrinógeno/metabolismo , Fibrinógeno/análisis , Pronóstico , Estudios Retrospectivos , Área Bajo la Curva , Anciano
10.
Artículo en Inglés | MEDLINE | ID: mdl-38708557

RESUMEN

BACKGROUND: Bemnifosbuvir (AT-527) is a novel oral guanosine nucleotide antiviral drug for the treatment of persons with COVID-19. Direct assessment of drug disposition in the lungs, via bronchoalveolar lavage, is necessary to ensure antiviral drug levels at the primary site of SARS-CoV-2 infection are achieved. OBJECTIVES: This Phase 1 study in healthy subjects aimed to assess the bronchopulmonary pharmacokinetics, safety and tolerability of repeated doses of bemnifosbuvir. METHODS: A total of 24 subjects were assigned to receive bemnifosbuvir twice daily at doses of 275, 550 or 825 mg for up to 3.5 days. RESULTS: AT-511, the free base of bemnifosbuvir, was largely eliminated from the plasma within 6 h post dose in all dosing groups. Antiviral drug levels of bemnifosbuvir were consistently achieved in the lungs with bemnifosbuvir 550 mg twice daily. The mean level of the guanosine nucleoside metabolite AT-273, the surrogate of the active triphosphate metabolite of the drug, measured in the epithelial lining fluid of the lungs was 0.62 µM at 4-5 h post dose. This exceeded the target in vitro 90% effective concentration (EC90) of 0.5 µM for antiviral drug exposure against SARS-CoV-2 replication in human airway epithelial cells. Bemnifosbuvir was well tolerated across all doses tested, and most treatment-emergent adverse events reported were mild in severity and resolved. CONCLUSIONS: The favourable pharmacokinetics and safety profile of bemnifosbuvir demonstrates its potential as an oral antiviral treatment for COVID-19, with 550 mg bemnifosbuvir twice daily currently under further clinical evaluation in persons with COVID-19.

11.
Anal Chem ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717986

RESUMEN

Simultaneous sensitive and precise determination of multibiomarkers is of great significance for improving detection efficiency, reducing diagnosis and treatment expenses, and elevating survival rates. However, the development of simple and portable biosensors for simultaneous determination of multiplexed targets in biological fluids still faces challenges. Herein, a unique and versatile immobilization-free dual-target electrochemical biosensing platform, which combines distinguishable magnetic signal reporters with buoyancy-magnetism separation, was designed and constructed for simultaneous detection of carcinoembryonic (CEA) and α-fetoprotein (AFP) in intricate biological fluids. To construct such distinguishable magnetic signal reporters with signal transduction, amplification, and output, secondary antibodies of CEA and AFP were respectively functionalized on methylene blue (MB) and 6-(ferrocenyl)hexanethiol (FeC) modified Fe3O4@Au magnetic nanocomposites. Meanwhile, a multifunctional flotation probe with dual target recognition, capture, and isolation capability was prepared by conjugating primary antibodies (Ab1-CEA, Ab1-AFP) to hollow buoyant microspheres. The target antigens of CEA and AFP can trigger a flotation-mediated sandwich-type immunoreaction and capture a certain amount of the distinguishable magnetic signal reporter, which enables the conversion of the target CEA and AFP quantities to the signal of the potential-resolved MB and FeC. Thus, the MB and FeC currents of magnetically adsorbed distinguishable magnetic reporters can be used to determine the CEA and AFP targets simultaneously and precisely. Accordingly, the proposed strategy exhibited a delightful linear response for CEA and AFP in the range of 100 fg·mL-1-100 ng·mL-1 with detection limits of 33.34 and 17.02 fg·mL-1 (S/N = 3), respectively. Meanwhile, no significant nonspecific adsorption and cross-talk were observed. The biosensing platform has shown satisfactory performance in the determination of real clinical samples. More importantly, the proposed approach can be conveniently extended to universal detection just by simply substituting biorecognition events. Thus, this work opens up a new promising perspective for dual and even multiple targets and offers promising potential applications in clinical diagnosis.

12.
PLoS One ; 19(5): e0302462, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753836

RESUMEN

Fruit shape is an important character of watermelon. And the compositions of rhizospheric and endophytic microorganisms of watermelon with different fruit shape also remains unclear. To elucidate the biological mechanism of watermelon fruit shape formations, the rhizospheric and endophytic microbial community compositions between oval (OW) and circular watermelons (CW) were analyzed. The results showed that except of the rhizospheric bacterial richness (P < 0.05), the rhizospheric and endophytic microbial (bacterial and fungal) diversity were not statistically significant between OW and CW (P > 0.05). However, the endophytic microbial (bacterial and fungal) compositions were significantly different. Firstly, Bacillus, Rhodanobacter, Cupriavidus, Luteimonas, and Devosia were the unique soil dominant bacterial genera in rhizospheres of circular watermelon (CW); In contrast, Nocardioides, Ensifer, and Saccharomonospora were the special soil dominant bacterial genera in rhizospheres of oval watermelons (OW); Meanwhile, Cephalotrichum, Neocosmospora, Phialosimplex, and Papulaspora were the unique soil dominant fungal genera in rhizospheres of circular watermelon (CW); By contrast, Acremonium, Cladosporium, Cryptococcus_f__Tremellaceae, Sodiomyces, Microascus, Conocybe, Sporidiobolus, and Acremonium were the unique soil dominant fungal genera in rhizospheres of oval watermelons (OW). Additionally, Lechevalieria, Pseudorhodoferax, Pseudomonas, Massilia, Flavobacterium, Aeromicrobium, Stenotrophomonas, Pseudonocardia, Novosphingobium, Melittangium, and Herpetosiphon were the unique dominant endophytic bacterial genera in stems of CW; In contrast, Falsirhodobacter, Kocuria, and Kineosporia were the special dominant endophytic genera in stems of OW; Moreover, Lectera and Fusarium were the unique dominant endophytic fungal genera in stems of CW; By contrast, Cercospora only was the special dominant endophytic fungal genus in stems of OW. All above results suggested that watermelons with different fruit shapes exactly recruited various microorganisms in rhizospheres and stems. Meanwhile, the enrichments of the different rhizosphric and endophytic microorganisms could be speculated in relating to watermelon fruit shapes formation.


Asunto(s)
Bacterias , Citrullus , Endófitos , Frutas , Hongos , Rizosfera , Microbiología del Suelo , Citrullus/microbiología , Endófitos/genética , Frutas/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Microbiota/genética
13.
Cell Discov ; 10(1): 49, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38740803

RESUMEN

Chimeric antigen receptor T (CAR-T) cells have been proposed for HIV-1 treatment but have not yet demonstrated desirable therapeutic efficacy. Here, we report newly developed anti-HIV-1 CAR-T cells armed with endogenic broadly neutralizing antibodies (bNAbs) and the follicle-homing receptor CXCR5, termed M10 cells. M10 cells were designed to exercise three-fold biological functions, including broad cytotoxic effects on HIV-infected cells, neutralization of cell-free viruses produced after latency reversal, and B-cell follicle homing. After demonstrating the three-fold biological activities, M10 cells were administered to treat 18 HIV-1 patients via a regimen of two allogenic M10 cell infusions with an interval of 30 days, with each M10 cell infusion followed by two chidamide stimulations for HIV-1 reservoir activation. Consequently, 74.3% of M10 cell infusions resulted in significant suppression of viral rebound, with viral loads declining by an average of 67.1%, and 10 patients showed persistently reduced cell-associated HIV-1 RNA levels (average decrease of 1.15 log10) over the 150-day observation period. M10 cells were also found to impose selective pressure on the latent viral reservoir. No significant treatment-related adverse effects were observed. Overall, our study supported the potential of M10 CAR-T cells as a novel, safe, and effective therapeutic option for the functional cure of HIV-1/AIDS.

14.
J Med Chem ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748913

RESUMEN

In this work, a series of bifunctional PD-L1/CD73 (cluster of differentiation 73) small-molecule inhibitors were designed and synthesized. Among them, CC-5 showed the strongest PD-L1 inhibitory effects with an IC50 of 6 nM and potent anti-CD73 activity with an IC50 of 0.773 µM. The high PD-L1/CD73 inhibitory activity of CC-5 was further confirmed by SPR assays with KD of 182 nM for human PD-L1 and 101 nM for CD73, respectively. Importantly, CC-5 significantly suppressed tumor growth in a CT26 and B16-F10 tumor model with TGI of 64.3% and 39.6%, respectively. Immunohistochemical (IHC) and flow cytometry analysis of tumor-infiltrating lymphocytes (TILs) indicated that CC-5 exerted anticancer effects via activating the tumor immune microenvironment. Collectively, CC-5 represents the first dual PD-L1/CD73 inhibitor worthy of further research as a bifunctional immunotherapeutic agent.

15.
Genome Med ; 16(1): 48, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566223

RESUMEN

BACKGROUND: Natural killer/T cell lymphoma (NKTCL) is a clinically and genetically heterogeneous disease with poor prognosis. Genome sequencing and mutation characterization provides a powerful approach for patient stratification, treatment target discovery, and etiology identification. However, previous studies mostly concentrated on base-level mutations in primary NKTCL, whereas the large-scale genomic alterations in NKTCL and the mutational landscapes in relapsed/refractory NKTCL remain largely unexplored. METHODS: Here, we assembled whole-genome sequencing and whole-exome sequencing data from 163 patients with primary or relapsed/refractory NKTCL and compared their somatic mutational landscapes at both nucleotide and structure levels. RESULTS: Our study not only confirmed previously reported common NKTCL mutational targets like STAT3, TP53, and DDX3X but also unveiled several novel high-frequency mutational targets such as PRDM9, DST, and RBMX. In terms of the overall mutational landscape, we observed striking differences between primary and relapsed/refractory NKTCL patient groups, with the latter exhibits higher levels of tumor mutation burden, copy number variants (CNVs), and structural variants (SVs), indicating a strong signal of genomic instability. Complex structural rearrangements such as chromothripsis and focal amplification are also significantly enriched in relapsed/refractory NKTCL patients, exerting a substantial impact on prognosis. Accordingly, we devised a novel molecular subtyping system (i.e., C0-C4) with distinct prognosis by integrating potential driver mutations at both nucleotide and structural levels, which further provides an informative guidance for novel treatments that target these specific driver mutations and genome instability as a whole. CONCLUSIONS: The striking differences underlying the mutational landscapes between the primary and relapsed/refractory NKTCL patients highlight the importance of genomic instability in driving the progression of NKTCL. Our newly proposed molecular subtyping system is valuable in assisting patient stratification and novel treatment design towards a better prognosis in the age of precision medicine.


Asunto(s)
Linfoma Extranodal de Células NK-T , Humanos , Linfoma Extranodal de Células NK-T/genética , Linfoma Extranodal de Células NK-T/patología , Mutación , Inestabilidad Genómica , Nucleótidos , Células Asesinas Naturales , N-Metiltransferasa de Histona-Lisina/genética
16.
J Adv Res ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38579985

RESUMEN

BACKGROUD: Central nervous system (CNS) diseases pose a serious threat to human health, but the regulatory mechanisms and therapeutic strategies of CNS diseases need to be further explored. It has been demonstrated that the gut microbiota (GM) is closely related to CNS disease. GM structure disorders, abnormal microbial metabolites, intestinal barrier destruction and elevated inflammation exist in patients with CNS diseases and promote the development of CNS diseases. More importantly, GM remodeling alleviates CNS pathology to some extent. AIM OF REVIEW: Here, we have summarized the regulatory mechanism of the GM in CNS diseases and the potential treatment strategies for CNS repair based on GM regulation, aiming to provide safer and more effective strategies for CNS repair from the perspective of GM regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW: The abundance and composition of GM is closely associated with the CNS diseases. On the basis of in-depth analysis of GM changes in mice with CNS disease, as well as the changes in its metabolites, therapeutic strategies, such as probiotics, prebiotics, and FMT, may be used to regulate GM balance and affect its microbial metabolites, thereby promoting the recovery of CNS diseases.

17.
Nat Prod Res ; : 1-6, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591101

RESUMEN

A chemical investigation on the marine sponge Dysidea sp. resulted in the isolation of a series of diketopiperazines, including two new compounds, dysidines A (1) and B (2) as well as six known ones (3-8). Their structures with absolute configurations were determined on the basis of UV, IR, HRMS, NMR and calculated ECD method. Additionally, the cytotoxic, anti-inflammatory, antibacterial and antiviral activities of 1-8 were also tested. However, none of them exhibited significant bioactivities.

18.
Small ; : e2307485, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623988

RESUMEN

Severe burn wounds usually destroy key cells' functions of the skin resulting in delayed re-epithelization and wound regeneration. Promoting key cells' activities is crucial for burn wound repair. It is well known that keratinocyte growth factor-2 (KGF-2) participates in the proliferation and morphogenesis of epithelial cells while acidic fibroblast growth factor (aFGF) is a key mediator for fibroblast and endothelial cell growth and differentiation. However, thick eschar and the harsh environment of a burn wound often decrease the delivery efficiency of fibroblast growth factor (FGF) to the wound site. Therefore, herein a novel microneedle patch for sequential transdermal delivery of KGF-2 and aFGF is fabricated to enhance burn wound therapy. aFGF is first loaded in the nanoparticle (NPaFGF) and then encapsulated NPaFGF with KGF-2 in the microneedle patch (KGF-2/NPaFGF@MN). The result shows that KGF-2/NPaFGF@MN can successfully get across the eschar and sequentially release KGF-2 and aFGF. Additional data demonstrated that KGF-2/NPaFGF@MN achieved a quicker wound closure rate with reduced necrotic tissues, faster re-epithelialization, enhanced collagen deposition, and increased neo-vascularization. Further evidence suggests that improved wound healing is regulated by significantly elevated expressions of hypoxia-inducible factor-1 alpha (HIF-1ɑ) and heat shock protein 90 (Hsp90) in burn wounds. All these data proved that KGF-2/NPaFGF@MN is an effective treatment for wound healing of burns.

19.
Adv Sci (Weinh) ; : e2307238, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639443

RESUMEN

Preventing and treating avascular necrosis at the distal end of the flaps are critical to surgery success, but current treatments are not ideal. A recent study shows that apoptotic bodies (ABs) generated near the site of apoptosis can be taken up and promote cell proliferation. The study reveals that ABs derived from fibroblast-like cells in the subcutaneous connective tissue (FSCT cells) of skin flaps promoted ischaemic flap survival. It is also found that ABs inhibited cell death and oxidative stress and promoted M1-to-M2 polarization in macrophages. Transcriptome sequencing and protein level testing demonstrated that ABs promoted ischaemic flap survival in endothelial cells and macrophages by inhibiting ferroptosis via the KEAP1-Nrf2 axis. Furthermore, microRNA (miR) sequencing data and in vitro and in vivo experiments demonstrated that ABs inhibited KEAP1 by delivering miR-339-5p to exert therapeutic effects. In conclusion, FSCT cell-derived ABs inhibited ferroptosis, promoted the macrophage M1-to-M2 transition via the miR-339-5p/KEAP1/Nrf2 axis and promoted ischaemic flap survival. These results provide a potential therapeutic strategy to promote ischaemic flap survival by administering ABs.

20.
Huan Jing Ke Xue ; 45(5): 2780-2792, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629541

RESUMEN

Understanding the strength of trade-off and synergistic relationships among ecosystem services (ESs) is crucial for ecological management and restoration in the Fenhe River Basin. However, there is still a lack of sufficient research on the driving variables and spatial pattern optimization of the strength of ESs relationships in this area. Based on the quantitative assessment of six ESs in the Fenhe River Basin in 2000 and 2020, the ecosystem services trade-off synergy index (TSI) was introduced to quantitatively measure the strength of trade-off and synergistic relationships between each pair of ESs. A Bayesian network was constructed to identify the driving variables of trade-off and synergistic relationships, and sensitivity analysis was conducted to determine the degree of influence of key variables on the strength of these relationships. The optimization area of the strength of ESs trade-off and synergistic relationships was characterized in spatial patterns. The results showed that:① There were significant spatiotemporal differences in the six ESs in the Fenhe River Basin in 2000 and 2020. In terms of time scale, water yield, net primary productivity, crop productivity, soil conservation, and carbon storage all showed a trend of fluctuating increase. In terms of spatial scale, the spatial distribution changes in the six ESs were relatively small over the 20 years. ② The TSI of carbon storage was high in the surrounding area and low in the middle, showing a four-high and four-low pattern. The areas with the highest TSI between grain supply and other services were distributed from north to south. ③ Sensitivity analysis found that the strength of water yield, soil conservation, and habitat quality were significantly affected by precipitation, plant root depth restriction, and rainfall erosion. According to the conditional probability of different states of key variables, Wenshui County, Qingxu County, and Qi County in the central part of the Fenhe River Basin were identified as high-value areas for trade-off and synergistic relationships, which could be used as key areas for ecological restoration. These findings have important theoretical and practical significance for understanding the complex relationship between multiple ESs trade-off and synergistic relationships and their driving variables and for proposing sustainable ecological environment management policies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...