Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Macro Lett ; 12(12): 1636-1641, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37972303

RESUMEN

Anisotropic materials have garnered significant attention due to their potential applications in cargo delivery, surface modification, and composite reinforcement. Crystallization-driven self-assembly (CDSA) is a practical way to access anisotropic structures, such as 2D platelets. Living CDSA, where platelets are formed by using seed particles, allows the platelet size to be well controlled. Nonetheless, the current method of platelet preparation is restricted to low concentrations and small scales, resulting in inefficient production, which hampers its potential for commercial applications. To address this limitation, continuous flow reactors were employed to improve the production efficiency. Flow platforms ensure consistent product quality by maintaining the same parameters throughout the process, circumventing batch-to-batch variations and discrepancies observed during scale-up. In this study, we present the first demonstration of living CDSA performed within flow reactors. A continuous flow system was established, and the epitaxial growth of platelets was initially conducted to study the influence of flow parameters such as temperature, residence time, and flow rate on the morphology of platelets. Comparison of different epitaxial growth manners of seeds and platelets was made when using seeds to perform living CDSA. Size-controllable platelets from seeds can be obtained from a series flow system by easily tuning flow rates. Additionally, uniform platelets were continuously collected, exhibiting improved size and dispersity compared to those obtained in batch reactions.

2.
J Am Chem Soc ; 145(46): 25274-25282, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37938914

RESUMEN

The decoration of 2D nanostructures using heteroepitaxial growth is of great importance to achieve functional assemblies employed in biomedical, electrical, and mechanical applications. Although the functionalization of polymers before self-assembly has been investigated, the exploration of direct surface modification in the third dimension from 2D nanostructures has, to date, been unexplored. Here, we used living crystallization-driven self-assembly to fabricate poly(ε-caprolactone)-based 2D platelets with controlled size. Importantly, surface modification of the platelets in the third dimension was achieved by using functional monomers and light-induced polymerization. This method allows us to selectively regulate the height and fluorescence properties of the nanostructures. Using this approach, we gained unprecedented spatial control over the surface functionality in the specific region of complex 2D platelets.

3.
RSC Adv ; 12(36): 23048-23056, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36090445

RESUMEN

Plant oil-based epoxy resins are of great interest due to their ecological and economic necessity. Previous studies suggested that the crosslinking density had a considerable influence on the mechanical and thermal properties of plant oil-based epoxy resins. However, so far, the relationship between the crosslinking density and the thermo-mechanical properties of plant oil-based epoxy resins is not clear. To address this issue, model tung oil-based epoxy resins with different crosslinking densities were fabricated to investigate the influence of crosslinking density on the mechanical and thermal properties of tung oil-based epoxy resins. Results show that the tensile strength, Young's modulus, and glass transition temperature are linearly increased with increasing crosslinking density. The elongation at break and tensile toughness show nonlinear downward trends as the crosslinking density increases. The elongation at break decreases gently at first, then dramatically, and finally slowly as the crosslinking density increases. The tensile toughness declines sharply at first and then slowly with increasing crosslinking density. The relationship between the thermostability and the crosslinking density is complex, because the thermostability is determined by both the molecular structure of the curing system and the crosslinking density. These results provide some information for designing plant oil-based epoxy resins according to the requirements of their applications.

4.
ACS Omega ; 6(49): 34142-34149, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34926962

RESUMEN

Diglycidyl ether of bisphenol A (DGEBA) is a kind of widely used epoxy resin, but its thermosets normally show high brittleness and poor impact resistance due to the intrinsic rigid aromatic rings, which limit its application greatly. To avoid this drawback, we proposed a method to prepare a series of hyperbranched epoxies (HBEPs) with different molecular weights. After HBEPs were cured with methyl tetrahydrophthalic anhydride (MTHPA), characterizations were carried out to evaluate the properties of the cured HBEP samples. Testing results indicate that the hyperbranched thermosets can achieve excellent mechanical strength and toughness (tensile strength: 89.2 MPa, bending strength: 129.6 MPa, elongation at break: 6.1%, toughness: 4.5 MJ m-3, and impact strength: 6.7 kJ m-2), which are superior to those of the thermosets of commercial DGEBA (tensile strength: 81.2 MPa, bending strength: 108.2 MPa, elongation at break: 3.0%, toughness: 1.5 MJ m-3, and impact strength: 4.2 kJ m-2). In addition, HBEP with the highest molecular weight and degree of branching shows the best comprehensive mechanical properties. All hyperbranched thermosets exhibit high glass-transition temperatures (T g) and thermostability, which further illustrates the potential application value of HBEPs.

5.
RSC Adv ; 9(44): 25880-25889, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35530098

RESUMEN

In this study, a modifier (CTMA) prepared by emulsion copolymerization of tung oil fatty acid, methyl esters of tung oil fatty acid and acrylonitrile was used to toughen epoxy resins. The structural characterization of the copolymer was carried out by Fourier transform infrared spectroscopy, 1H NMR spectroscopy and high-temperature gel permeation chromatography. Mechanical testing, thermal characterization and scanning electron microscopy were conducted to investigate the properties of epoxy resin modified by the copolymer and further reveal its toughening mechanism. The results indicated that the newly synthesized copolymer effectively toughened the epoxy resin because the elongation-at-break was increased to 89.48%, the maximum toughness calculated by work before break was nearly 4.6 times that of the neat epoxy resin, and apparent shear yields and plastic deformations were observed in the morphology of the fractured surfaces. CTMA, which acts as a flexible cross-linker in the epoxy thermoset, may decrease the cross-linking density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...