Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Intervalo de año de publicación
1.
Adv Mater ; : e2310480, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669281

RESUMEN

Conjugated polymers are promising materials for thermoelectric applications, however, at present few effective and well-understood strategies exist to further advance their thermoelectric performance. Here a new model system is reported for a better understanding of the key factors governing their thermoelectric properties: aligned, ribbon-phase poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) doped by ion-exchange doping. Using a range of microstructural and spectroscopic methods, the effect of controlled incorporation of tie-chains between the crystalline domains is studied through blending of high and low molecular weight chains. The tie chains provide efficient transport pathways between crystalline domains and lead to significantly enhanced electrical conductivity of 4810 S cm-1, which is not accompanied by a reduction in Seebeck coefficient or a large increase in thermal conductivity. Respectable power factors of 173 µW m-1 K-2 are demonstrated in this model system. The approach is generally applicable to a wide range of semicrystalline conjugated polymers and could provide an effective pathway for further enhancing their thermoelectric properties and overcome traditional trade-offs in optimization of thermoelectric performance.

2.
Sci Adv ; 10(6): eadk6856, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335291

RESUMEN

Formaldehyde, a known human carcinogen, is a common indoor air pollutant. However, its real-time and selective recognition from interfering gases remains challenging, especially for low-power sensors suffering from noise and baseline drift. We report a fully 3D-printed quantum dot/graphene-based aerogel sensor for highly sensitive and real-time recognition of formaldehyde at room temperature. By optimizing the morphology and doping of printed structures, we achieve a record-high and stable response of 15.23% for 1 part per million formaldehyde and an ultralow detection limit of 8.02 parts per billion consuming only ∼130-microwatt power. On the basis of measured dynamic response snapshots, we also develop intelligent computational algorithms for robust and accurate detection in real time despite simulated substantial noise and baseline drift, hitherto unachievable for room temperature sensors. Our framework in combining materials engineering, structural design, and computational algorithm to capture dynamic response offers unprecedented real-time identification capabilities of formaldehyde and other volatile organic compounds at room temperature.

3.
Nat Commun ; 15(1): 288, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177094

RESUMEN

The charge-transport properties of conjugated polymers have been studied extensively for opto-electronic device applications. Some polymer semiconductors not only support the ambipolar transport of electrons and holes, but do so with comparable carrier mobilities. This opens the possibility of gaining deeper insight into the charge-transport physics of these complex materials via comparison between electron and hole dynamics while keeping other factors, such as polymer microstructure, equal. Here, we use field-induced electron spin resonance spectroscopy to compare the spin relaxation behavior of electron and hole polarons in three ambipolar conjugated polymers. Our experiments show unique relaxation regimes as a function of temperature for electrons and holes, whereby at lower temperatures electrons relax slower than holes, but at higher temperatures, in the so-called spin-shuttling regime, the trend is reversed. On the basis of theoretical simulations, we attribute this to differences in the delocalization of electron and hole wavefunctions and show that spin relaxation in the spin shuttling regimes provides a sensitive probe of the intimate coupling between charge and structural dynamics.

4.
Adv Sci (Weinh) ; 10(29): e2303837, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37551064

RESUMEN

n-Type organic electrochemical transistors (OECTs) and organic field-effect transistors (OFETs) are less developed than their p-type counterparts. Herein, polynaphthalenediimide (PNDI)-based copolymers bearing novel fluorinated selenophene-vinylene-selenophene (FSVS) units as efficient materials for both n-type OECTs and n-type OFETs are reported. The PNDI polymers with oligo(ethylene glycol) (EG7) side chains P(NDIEG7-FSVS), affords a high µC* of > 0.2 F cm-1  V-1  s-1 , outperforming the benchmark n-type Pg4NDI-T2 and Pg4NDI-gT2 by two orders of magnitude. The deep-lying LUMO of -4.63 eV endows P(NDIEG7-FSVS) with an ultra-low threshold voltage of 0.16 V. Moreover, the conjugated polymer with octyldodecyl (OD) side chains P(NDIOD-FSVS) exhibits a surprisingly low energetic disorder with an Urbach energy of 36 meV and an ultra-low activation energy of 39 meV, resulting in high electron mobility of up to 0.32 cm2  V-1  s-1 in n-type OFETs. These results demonstrate the great potential for simultaneously achieving a lower LUMO and a tighter intermolecular packing for the next-generation efficient n-type organic electronics.

5.
Small ; 19(41): e2302494, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37300316

RESUMEN

The migration of ionic defects and electrochemical reactions with metal electrodes remains one of the most important research challenges for organometal halide perovskite optoelectronic devices. There is still a lack of understanding of how the formation of mobile ionic defects impact charge carrier transport and operational device stability, particularly in perovskite field-effect transistors (FETs), which tend to exhibit anomalous device characteristics. Here, the evolution of the n-type FET characteristics of one of the most widely studied materials, Cs0.05 FA0.17 MA0.78 PbI3, is investigated during repeated measurement cycles as a function of different metal source-drain contacts and precursor stoichiometry. The channel current increases for high work function metals and decreases for low work function metals when multiple cycles of transfer characteristics are measured. The cycling behavior is also sensitive to the precursor stoichiometry. These metal/stoichiometry-dependent device non-idealities are correlated with the quenching of photoluminescence near the positively biased electrode. Based on elemental analysis using electron microscopy the observations can be understood by an n-type doping effect of metallic ions that are created by an electrochemical interaction at the metal-semiconductor interface and migrate into the channel. The findings improve the understanding of ion migration, contact reactions, and the origin of non-idealities in lead triiodide perovskite FETs.

6.
Sci Adv ; 9(22): eadg8659, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37267357

RESUMEN

Organic thin-film transistors (OTFTs) with ideal behavior are highly desired, because nonideal devices may overestimate the intrinsic property and yield inferior performance in applications. In reality, most polymer OTFTs reported in the literature do not exhibit ideal characteristics. Supported by a structure-property relationship study of several low-disorder conjugated polymers, here, we present an empirical selection rule for polymer candidates for textbook-like OTFTs with high reliability factors (100% for ideal transistors). The successful candidates should have low energetic disorder along their backbones and form thin films with spatially uniform energetic landscapes. We demonstrate that these requirements are satisfied in the semicrystalline polymer PffBT4T-2DT, which exhibits a reliability factor (~100%) that is exceptionally high for polymer devices, rendering it an ideal candidate for OTFT applications. Our findings broaden the selection of polymer semiconductors with textbook-like OTFT characteristics and would shed light upon the molecular design criteria for next-generation polymer semiconductors.

7.
Rev. bras. med. esporte ; 29: e2022_0275, 2023. tab
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1407624

RESUMEN

ABSTRACT Introduction Gymnastics sports require athletes to have exceptional physical fitness. Distinct specific training methods, when mastered, can elevate the functional capacity and athletic abilities of professionals. In this way, athletes can better perform their abilities in competition. Objective Analyze the physical training methods of gymnasts. In parallel, this paper analyzes the impact of functional training methods on gymnasts' physical fitness and competition performance. Methods This paper selects several gymnasts as research objects. The gymnasts were randomly divided into two groups (experimental and control groups). The experimental group used functional training. The control group used traditional training methods. This paper tests and records the athletes' fitness before and after training. The mathematical statistics method allows the collected data to be analyzed and discussed. Results There was a big difference in the fitness index between the experimental and control groups (P<0.05). Conclusion Functional training helps to improve the physical performance of gymnasts. Functional training programs can effectively enhance the response of the phasic muscles, positively influencing motor agility. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.


RESUMO Introdução A ginástica esportiva exige que os atletas tenham uma aptidão física excepcional. Distintos métodos de treinamento específicos, quando dominados, podem elevar a capacidade funcional e habilidades atléticas dos profissionais. Desta forma, os atletas podem desempenhar melhor suas capacidades na competição. Objetivo Analisar os métodos de treinamento físico dos ginastas. Paralelamente, este trabalho analisa o impacto dos métodos de treinamento funcional na aptidão física e no desempenho de competição dos ginastas. Métodos Este trabalho seleciona vários ginastas como objetos de pesquisa. Os ginastas foram divididos aleatoriamente em dois grupos (grupos experimentais e grupos de controle). O grupo experimental utilizou o treinamento funcional. O grupo de controle utilizou métodos tradicionais de treinamento. Este artigo testa e registra a aptidão física dos atletas antes e depois do treinamento. O método de estatística matemática permite analisar os dados coletados, posteriormente discutidos. Resultados Houve uma grande diferença no índice de aptidão física entre os grupos experimental e controle (P<0,05). Conclusão O treinamento funcional ajuda a melhorar o desempenho físico dos ginastas. Os programas de treinamento funcional podem efetivamente aprimorar a resposta da musculatura fásica, influenciando positivamente na agilidade motora. Nível de evidência II; Estudos terapêuticos - investigação dos resultados do tratamento.


RESUMEN Introducción El deporte de la gimnasia requiere que los atletas tengan un estado físico excepcional. Los distintos métodos de entrenamiento específicos, cuando se dominan, pueden elevar la capacidad funcional y las habilidades atléticas de los profesionales. De este modo, los atletas pueden desarrollar mejor sus habilidades en la competición. Objetivo Analizar los métodos de entrenamiento físico de los gimnastas. Paralelamente, este trabajo analiza el impacto de los métodos de entrenamiento funcional en la condición física y el rendimiento en competición de los gimnastas. Métodos Este trabajo selecciona a varias gimnastas como objeto de investigación. Los gimnastas se dividieron aleatoriamente en dos grupos (grupo experimental y grupo de control). El grupo experimental utilizó el entrenamiento funcional. El grupo de control utilizó métodos de entrenamiento tradicionales. En este trabajo se comprueba y registra la aptitud física de los atletas antes y después del entrenamiento. El método de la estadística matemática permite analizar los datos recogidos, que se comentan más adelante. Resultados Hubo una gran diferencia en el índice de aptitud física entre los grupos experimental y de control (P<0,05). Conclusión El entrenamiento funcional ayuda a mejorar el rendimiento físico de los gimnastas. Los programas de entrenamiento funcional pueden mejorar eficazmente la respuesta de los músculos fásicos, influyendo positivamente en la agilidad motriz. Nivel de evidencia II; Estudios terapéuticos - investigación de los resultados del tratamiento.

8.
ACS Appl Mater Interfaces ; 14(14): 16477-16486, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35357117

RESUMEN

Small-molecule semiconductors used as the channel of organic electrochemical transistors (OECTs) have been rarely reported despite their inherent advantages of well-defined molecular weight, convenient scale-up synthesis, and good performance reproducibility. Herein, three small molecules based on perylene diimides are readily prepared for n-type OECTs. The final molecules show preferred energy levels, tunable backbone conformation, and high film crystallinity, rendering them good n-type dopability, favorable volumetric capacities, and substantial electron mobilities. Consequently, the OECTs afford a record-low threshold voltage of 0.05 V and a normalized peak transconductance of 4.52 × 10-2 S cm-1, as well as impressive long-term cycling stability. Significantly, the OECTs utilized for hydrogen peroxide sensing are further demonstrated with a detection limit of 0.75 µM. This work opens the possibility of developing nonfullerene small molecules as superior n-type OECT materials and provides important insights for designing high-performance small-molecule mixed ion-electron conductors for OECTs and (bio)sensors.

9.
Animals (Basel) ; 11(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800148

RESUMEN

Gut microbiota is thought to play a crucial role in nutrient digestion for pigs, especially in processing indigestible polysaccharides in the diets to produce short-chain fatty acids (SCFAs). However, the link between microbiota community structure and phenotypic performances are poorly understood. In the present study, the fecal samples of 105 Jinhua pigs at 105 days of age were clustered into three enterotypes (ETs, ET1, ET2, and ET3) that are subpopulations of distinct bacterial community composition by using 16S rRNA high throughput sequencing. The α-diversity indices (the OTU number and Shannon index) were significantly different among the ETs (p < 0.001). At the genus level, the ET1 group was over-represented by Lactobacillus (17.49%) and Clostridium sensu stricto 1 (11.78%), the ET2 group was over-represented by Clostridium sensu stricto 1 (17.49%) and Bifidobacterium (11.78%), and the ET3 group was over-represented by Bacteroides (18.17%). Significant differences in the fecal contents of butyrate were observed among ETs, with the highest level detected in ET3 and the lowest in ET2 (p < 0.05). Consistently, more copies of the terminal genes for butyrate synthesis, butyrate kinase (Buk) and butyryl coenzyme A (CoA): acetate CoA transferase (But) were detected by qPCR in the fecal samples of the ET3 group as compared to other two groups (p < 0.05). In addition, of the two genes, But was demonstrated to be more relevant to the butyrate content (R = 0.7464) than Buk (R = 0.4905) by correlation analysis. In addition, based on the taxonomic analysis, we found that Faecalibacterium was the most relevant butyrate-producing genera with fecal butyrate contents in Jinhua pigs, followed by Butyricicoccus, Eubacterium, Butyricimonas, Blautia, and Anaerostipes, all of which showed significantly higher richness in ET3 than as compared to ET1 and ET2 (p < 0.05). Collectively, this work presents a first overview of the enterotypes clustering in Jinhua pigs and will help to unravel the functional implications of ETs for the pig's phenotypic performance and nutrient metabolism.

10.
Sci Adv ; 7(18)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33910909

RESUMEN

We investigate the charge transport physics of a previously unidentified class of electron-deficient conjugated polymers that do not contain any single bonds linking monomer units along the backbone but only double-bond linkages. Such polymers would be expected to behave as rigid rods, but little is known about their actual chain conformations and electronic structure. Here, we present a detailed study of the structural and charge transport properties of a family of four such polymers. By adopting a copolymer design, we achieve high electron mobilities up to 0.5 cm2 V-1 s-1 Field-induced electron spin resonance measurements of charge dynamics provide evidence for relatively slow hopping over, however, long distances. Our work provides important insights into the factors that limit charge transport in this unique class of polymers and allows us to identify molecular design strategies for achieving even higher levels of performance.

11.
Front Nutr ; 8: 812011, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35118109

RESUMEN

The aim of this study was to evaluate the effect of Hermetia illucens larvae meal (HI) on the growth performance and intestinal barrier function of weaned pigs. To achieve this, 72 weaned pigs [28-day-old, 8.44 ± 0.04 kg body weight (BW)] were randomly assigned to three dietary treatments: basal diet (negative control, NC), zinc oxide-supplemented diet (positive control, PC), and HI-supplemented diet [100% replacement of fishmeal (FM), HI], for 28 days in the presence of enterotoxigenic Escherichia coli (ETEC). The results showed that HI and PC increased (p < 0.05) the average daily gain (ADG) and average daily feed intake (ADFI) of weaned pigs from day 1 to 14, and decreased diarrhea incidence from day 1 to 28. Additionally, HI increased (p < 0.05) claudin-1, occludin, mucin-1 (MUC-1), and MUC-2 expression, goblet cell number, and secretory immunoglobulin A (sIgA) concentration in the intestine of weaned pigs. Compared with NC, HI downregulated (p < 0.05) interleukin-1ß (IL-1ß) and IL-8 expression, and upregulated IL-10, transforming growth factor-ß (TGF-ß), antimicrobial peptide [porcine ß defensin 1 (pBD1), pBD2, protegrin 1-5 (PG1-5)] expression in the jejunum or ileum. Moreover, HI decreased (p < 0.05) toll-like receptor 2 (TLR2), phosphorylated nuclear factor-κB (p-NF-κB), and phosphorylated mitogen-activated protein kinase (p-MAPK) expression, and increased sirtuin 1 (SIRT1) expression in the ileum. Additionally, HI increased histone deacetylase 3 (HDAC3) expression and acetylation of histone 3 lysine 27 (acH3k27) in the ileum. Furthermore, HI positively influenced the intestinal microbiota composition and diversity of weaned pigs and increased (p < 0.05) butyrate and valerate concentrations. Overall, dietary HI improved growth performance and intestinal barrier function, as well as regulated histone acetylation and TLR2-NF-κB/MAPK signaling pathways in weaned pigs.

12.
J Am Chem Soc ; 143(1): 260-268, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33350307

RESUMEN

Three n-type fused lactam semiconducting polymers were synthesized for thermoelectric and transistor applications via a cheap, highly atom-efficient, and nontoxic transition-metal free aldol polycondensation. Energy level analysis of the three polymers demonstrated that reducing the central acene core size from two anthracenes (A-A), to mixed naphthalene-anthracene (A-N), and two naphthalene cores (N-N) resulted in progressively larger electron affinities, thereby suggesting an increasingly more favorable and efficient solution doping process when employing 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) as the dopant. Meanwhile, organic field effect transistor (OFET) mobility data showed the N-N and A-N polymers to feature the highest charge carrier mobilities, further highlighting the benefits of aryl core contraction to the electronic performance of the materials. Ultimately, the combination of these two factors resulted in N-N, A-N, and A-A to display power factors (PFs) of 3.2 µW m-1 K-2, 1.6 µW m-1 K-2, and 0.3 µW m-1 K-2, respectively, when doped with N-DMBI, whereby the PFs recorded for N-N and A-N are among the highest reported in the literature for n-type polymers. Importantly, the results reported in this study highlight that modulating the size of the central acene ring is a highly effective molecular design strategy to optimize the thermoelectric performance of conjugated polymers, thus also providing new insights into the molecular design guidelines for the next generation of high-performance n-type materials for thermoelectric applications.

13.
Adv Mater ; 32(23): e2000063, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32363687

RESUMEN

Precise control of the microstructure in organic semiconductors (OSCs) is essential for developing high-performance organic electronic devices. Here, a comprehensive charge transport characterization of two recently reported rigid-rod conjugated polymers that do not contain single bonds in the main chain is reported. It is demonstrated that the molecular design of the polymer makes it possible to achieve an extended linear backbone structure, which can be directly visualized by high-resolution scanning tunneling microscopy (STM). The rigid structure of the polymers allows the formation of thin films with uniaxially aligned polymer chains by using a simple one-step solution-shear/bar coating technique. These aligned films show a high optical anisotropy with a dichroic ratio of up to a factor of 6. Transport measurements performed using top-gate bottom-contact field-effect transistors exhibit a high saturation electron mobility of 0.2 cm2 V-1 s-1 along the alignment direction, which is more than six times higher than the value reported in the previous work. This work demonstrates that this new class of polymers is able to achieve mobility values comparable to state-of-the-art n-type polymers and identifies an effective processing strategy for this class of rigid-rod polymer system to optimize their charge transport properties.

14.
Nat Commun ; 9(1): 416, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29379022

RESUMEN

Conventional semiconducting polymer synthesis typically involves transition metal-mediated coupling reactions that link aromatic units with single bonds along the backbone. Rotation around these bonds contributes to conformational and energetic disorder and therefore potentially limits charge delocalisation, whereas the use of transition metals presents difficulties for sustainability and application in biological environments. Here we show that a simple aldol condensation reaction can prepare polymers where double bonds lock-in a rigid backbone conformation, thus eliminating free rotation along the conjugated backbone. This polymerisation route requires neither organometallic monomers nor transition metal catalysts and offers a reliable design strategy to facilitate delocalisation of frontier molecular orbitals, elimination of energetic disorder arising from rotational torsion and allowing closer interchain electronic coupling. These characteristics are desirable for high charge carrier mobilities. Our polymers with a high electron affinity display long wavelength NIR absorption with air stable electron transport in solution processed organic thin film transistors.

15.
Opt Express ; 21(17): 19808-15, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-24105529

RESUMEN

In this paper, a self-supporting polymer pipe is proposed and investigated for THz wave transmission. Utilizing fiber drawing technique for polymer fiber, self-supporting pipes with wall thickness of several tens micrometers can be fabricated using polymethylmethacrylate (PMMA). The guiding mechanism and transmission characteristics of the self-supporting pipes are investigated theoretically, showing that it can support single-mode transmission at THz band. The self-supporting pipe samples with different structure parameters are fabricated and measured experimentally, showing that it can support single HE(11) mode transmission. Theoretical analysis and experimental results show that this self-supporting polymer pipe is a promising candidate for low loss THz fibers.

16.
Sensors (Basel) ; 9(5): 3325-36, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22412314

RESUMEN

Although ultrasound cavitation must be avoided for safe diagnostic applications, the ability of ultrasound to disrupt cell membranes has taken on increasing significance as a method to facilitate drug and gene delivery. A new ultrasonic resonance driving method is introduced to penetrate rigid wall plant cells or oocytes with springy cell membranes. When a reasonable design is created, ultrasound can gather energy and increase the amplitude factor. Ultrasonic penetration enables exogenous materials to enter cells without damaging them by utilizing instant acceleration. This paper seeks to develop a miniature ultrasonic probe experiment system for cell penetration. A miniature ultrasonic probe is designed and optimized using the Precise Four Terminal Network Method and Finite Element Method (FEM) and an ultrasonic generator to drive the probe is designed. The system was able to successfully puncture a single fish cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...