Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 226, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075623

RESUMEN

BACKGROUND: B-cell CLL/lymphoma 6 member B (BCL6B) operates as a sequence-specific transcriptional repressor within the nucleus, playing crucial roles in various biological functions, including tumor suppression, immune response, stem cell self-renew, and vascular angiogenesis. However, whether BCL6B is involved in endothelial cell (EC) development has remained largely unknown. ETS variant transcription factor 2 (ETV2) is well known to facilitate EC differentiation. This study aims to determine the important role of BCL6B in EC differentiation and its potential mechanisms. METHODS: Doxycycline-inducible human induced pluripotent stem cell (hiPSC) lines with BCL6B overexpression or BCL6B knockdown were established and subjected to differentiate into ECs and vessel organoids (VOs). RNA sequencing analysis was performed to identify potential signal pathways regulated by BCL6B during EC differentiation from hiPSCs. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of pluripotency and vascular-specific marker genes expression. EC differentiation efficiency was determined by Flow cytometry analysis. The performance of EC was evaluated by in vitro Tube formation assay. The protein expression and the vessel-like structures were assessed using immunofluorescence analysis or western blot. Luciferase reporter gene assay and chromatin immunoprecipitation (ChIP)-PCR analysis were used to determine the regulatory relationship between BCL6B and ETV2. RESULTS: Functional ECs and VOs were successfully generated from hiPSCs. Notably, overexpression of BCL6B suppressed while knockdown of BCL6B improved EC differentiation from hiPSCs. Additionally, the overexpression of BCL6B attenuated the capacity of derived hiPSC-ECs to form a tubular structure. Furthermore, compared to the control VOs, BCL6B overexpression repressed the growth of VOs, whereas BCL6B knockdown had little effect on the size of VOs. RNA sequencing analysis confirmed that our differentiation protocol induced landscape changes for cell/tissue/system developmental process, particularly vascular development and tube morphogenesis, which were significantly modulated by BCL6B. Subsequent experiments confirmed the inhibitory effect of BCL6B is facilitated by the binding of BCL6B to the promoter region of ETV2, led to the suppression of ETV2's transcriptional activity. Importantly, the inhibitory effect of BCL6B overexpression on EC differentiation from hiPSCs could be rescued by ETV2 overexpression. CONCLUSIONS: BCL6B inhibits EC differentiation and hinders VO development by repressing the transcriptional activity of ETV2.


Asunto(s)
Diferenciación Celular , Células Endoteliales , Células Madre Pluripotentes Inducidas , Factores de Transcripción , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Endoteliales/metabolismo , Células Endoteliales/citología , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética
2.
Cell Rep ; 43(5): 114237, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753484

RESUMEN

Cardiac dysfunction, an early complication of endotoxemia, is the major cause of death in intensive care units. No specific therapy is available at present for this cardiac dysfunction. Here, we show that the N-terminal gasdermin D (GSDMD-N) initiates mitochondrial apoptotic pore and cardiac dysfunction by directly interacting with cardiolipin oxidized by complex II-generated reactive oxygen species (ROS) during endotoxemia. Caspase-4/11 initiates GSDMD-N pores that are subsequently amplified by the upregulation and activation of NLRP3 inflammation through further generation of ROS. GSDMD-N pores form prior to BAX and VDAC1 apoptotic pores and further incorporate into BAX and VDAC1 oligomers within mitochondria membranes to exacerbate the apoptotic process. Our findings identify oxidized cardiolipin as the definitive target of GSDMD-N in mitochondria of cardiomyocytes during endotoxin-induced myocardial dysfunction (EIMD), and modulation of cardiolipin oxidation could be a therapeutic target early in the disease process to prevent EIMD.


Asunto(s)
Cardiolipinas , Endotoxemia , Péptidos y Proteínas de Señalización Intracelular , Miocitos Cardíacos , Oxidación-Reducción , Proteínas de Unión a Fosfato , Especies Reactivas de Oxígeno , Cardiolipinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Endotoxemia/metabolismo , Endotoxemia/patología , Proteínas de Unión a Fosfato/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones , Humanos , Ratones Endogámicos C57BL , Masculino , Apoptosis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mitocondrias/metabolismo , Gasderminas
3.
Cardiovasc Res ; 120(7): 796-810, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38498586

RESUMEN

AIMS: Long non-coding RNA (LncRNA) small nucleolar RNA host gene 18 (SNHG18) has been widely implicated in cancers. However, little is known about its functional involvement in vascular diseases. Herein, we attempted to explore a role for SNHG18 in modulating vascular smooth muscle cell (VSMC) contractile phenotype and injury-induced neointima formation. METHODS AND RESULTS: Analysis of single-cell RNA sequencing and transcriptomic datasets showed decreased levels of SNHG18 in injured and atherosclerotic murine and human arteries, which is positively associated with VSMC contractile genes. SNHG18 was upregulated in VSMCs by TGFß1 through transcription factors Sp1 and SMAD3. SNHG18 gene gain/loss-of-function studies revealed that VSMC contractile phenotype was positively regulated by SNHG18. Mechanistic studies showed that SNHG18 promotes a contractile VSMC phenotype by up-regulating miR-22-3p. SNHG18 up-regulates miR-22 biogenesis and miR-22-3p production by competitive binding with the A-to-I RNA editing enzyme, adenosine deaminase acting on RNA-2 (ADAR2). Surprisingly, we observed that ADAR2 inhibited miR-22 biogenesis not through increasing A-to-I editing within primary miR-22, but by interfering with the binding of microprocessor complex subunit DGCR8 to primary miR-22. Importantly, perivascular SNHG18 overexpression in the injured vessels dramatically up-regulated the expression levels of miR-22-3p and VSMC contractile genes, and prevented injury-induced neointimal hyperplasia. Such modulatory effects were reverted by miR-22-3p inhibition in the injured arteries. Finally, we observed a similar regulator role for SNHG18 in human VSMCs and a decreased expression level of both SNHG18 and miR-22-3p in diseased human arteries; and we found that the expression level of SNHG18 was positively associated with that of miR-22-3p in both healthy and diseased human arteries. CONCLUSION: We demonstrate that SNHG18 is a novel regulator in governing VSMC contractile phenotype and preventing injury-induced neointimal hyperplasia. Our findings have important implications for therapeutic targeting snhg18/miR-22-3p signalling in vascular diseases.


Asunto(s)
Traumatismos de las Arterias Carótidas , Modelos Animales de Enfermedad , Hiperplasia , Ratones Endogámicos C57BL , MicroARNs , Músculo Liso Vascular , Miocitos del Músculo Liso , Neointima , Fenotipo , ARN Largo no Codificante , Músculo Liso Vascular/patología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Animales , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/metabolismo , Células Cultivadas , Masculino , Transducción de Señal , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Regulación de la Expresión Génica , Ratones , Ratones Noqueados para ApoE
4.
Micromachines (Basel) ; 15(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38398901

RESUMEN

In this study, the electrical characteristics of depletion-mode AlGaN/GaN high-electron-mobility transistors (HEMTs) with a SiNx gate dielectric were tested under hydrogen exposure conditions. The experimental results are as follows: (1) After hydrogen treatment at room temperature, the threshold voltage VTH of the original device was positively shifted from -16.98 V to -11.53 V, and the positive bias of threshold was 5.45 V. When the VDS was swept from 0 to 1 V with VGS of 0 V, the IDS was reduced by 25% from 9.45 A to 7.08 A. (2) Another group of original devices with identical electrical performance, after the same duration of hydrogen treatment at 100 °C, exhibited a reverse shift in threshold voltage with a negative threshold shift of -0.91 V. The output characteristics were enhanced, and the saturation leakage current was increased. (3) The C-V method and the low-frequency noise method were used to investigate the effect of hydrogen effect on the device interface trap and border trap, respectively. It was found that high-temperature hydrogen conditions can passivate the interface/border traps of SiNx/AlGaN, reducing the density of interface/border traps and mitigating the trap capture effect. However, in the room-temperature hydrogen experiment, the concentration of interface/border traps increased. The research findings in this paper provide valuable references for the design and application of depletion-mode AlGaN/GaN HEMT devices.

5.
Hypertension ; 81(4): 787-800, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240164

RESUMEN

BACKGROUND: High blood pressure has been suggested to accelerate vascular injury-induced neointimal formation and progression. However, little is known about the intricate relationships between vascular injury and hypertension in the context of arterial remodeling. METHODS: Single-cell RNA-sequencing analysis was used to depict the cell atlas of carotid arteries of Wistar Kyoto rats and spontaneously hypertensive rats with or without balloon injury. RESULTS: We found that hypertension significantly aggravated balloon injury-induced arterial stenosis. A total of 36 202 cells from carotid arteries with or without balloon injury were included in single-cell RNA-sequencing analysis. Cell composition analysis showed that vascular injury and hypertension independently induced distinct aortic cell phenotypic alterations including immune cells, endothelial cells (ECs), and smooth muscle cells. Specifically, our data showed that injury and hypertension-induced specific EC phenotypic alterations, and revealed a transition from functional ECs to hypermetabolic, and eventually dysfunctional ECs in hypertensive rats upon balloon injury. Importantly, our data also showed that vascular injury and hypertension-induced different smooth muscle cell phenotypic alterations, characterized by deferential expression of synthetic signatures. Interestingly, pathway analysis showed that dysregulated metabolic pathways were a common feature in monocytes/macrophages, ECs, and smooth muscle cells in response to injury and hypertension. Functionally, we demonstrate that inhibition of mitochondrial respiration significantly ameliorated injury-induced neointimal formation in spontaneously hypertensive rats. CONCLUSIONS: This study provides the cell landscape changes of the main aortic cell phenotypic alterations in response to injury and hypertension. Our findings suggest that targeting cellular mitochondrial respiration could be a novel therapeutic for patients with hypertension undergoing vascular angioplasty.


Asunto(s)
Traumatismos de las Arterias Carótidas , Hipertensión , Lesiones del Sistema Vascular , Humanos , Ratas , Animales , Ratas Endogámicas SHR , Células Endoteliales/metabolismo , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/terapia , Neointima/patología , Ratas Endogámicas WKY , ARN
6.
Adv Sci (Weinh) ; 11(9): e2308686, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145971

RESUMEN

Arterial Vascular smooth muscle cells (VSMCs) play a central role in the onset and progression of atherosclerosis. Upon exposure to pathological stimuli, they can take on alternative phenotypes that, among others, have been described as macrophage like, or foam cells. VSMC foam cells make up >50% of all arterial foam cells and have been suggested to retain an even higher proportion of the cell stored lipid droplets, further leading to apoptosis, secondary necrosis, and an inflammatory response. However, the mechanism of VSMC foam cell formation is still unclear. Here, it is identified that mechanical stimulation through hypertensive pressure alone is sufficient for the phenotypic switch. Hyperspectral stimulated Raman scattering imaging demonstrates rapid lipid droplet formation and changes to lipid metabolism and changes are confirmed in ABCA1, KLF4, LDLR, and CD68 expression, cell proliferation, and migration. Further, a mechanosignaling route is identified involving Piezo1, phospholipid, and arachidonic acid signaling, as well as epigenetic regulation, whereby CUT&Tag epigenomic analysis confirms changes in the cells (lipid) metabolism and atherosclerotic pathways. Overall, the results show for the first time that VSMC foam cell formation can be triggered by mechanical stimulation alone, suggesting modulation of mechanosignaling can be harnessed as potential therapeutic strategy.


Asunto(s)
Aterosclerosis , Células Espumosas , Humanos , Células Espumosas/metabolismo , Células Espumosas/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Transdiferenciación Celular , Epigénesis Genética , Aterosclerosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA