Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Curr Mol Pharmacol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38644719

RESUMEN

Nasopharyngeal cancer is a rare cancer with unique ethnic and geographic distribution. Since nasopharyngeal cancer often originates from the pharyngeal crypt, early symptoms are not obvious. They are difficult to detect in time, and the disease is usually diagnosed and treated only when it has progressed to an advanced-stage. Since angiogenesis is essential for the growth and invasion of solid tumors, antiangiogenic therapy has become a common treatment strategy for many solid tumors, and it has also achieved remarkable results in the treatment of nasopharyngeal carcinoma, which is prone to recurrence and distant metastasis. In this paper, we review the latest research progress of antiangiogenic drugs for nasopharyngeal carcinoma and their antiangiogenic mechanism of action and further propose some promising antiangiogenic therapeutic targets.

2.
J Exp Clin Cancer Res ; 43(1): 62, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38419081

RESUMEN

BACKGROUND: In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold­inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS: CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS: Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)­like population. Moreover, hyperthermia substantially improved the sensitivity of radiation­resistant NPC cells and CSC­like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti­tumor­killing activity of hyperthermia against NPC cells and CSC­like cells, whereas ectopic expression of Cirbp compromised tumor­killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC­like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION: Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.


Asunto(s)
Diterpenos de Tipo Kaurano , Hipertermia Inducida , MicroARNs , Neoplasias Nasofaríngeas , Animales , Humanos , Neoplasias Nasofaríngeas/patología , Sincalida/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/patología , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
3.
Thyroid ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38243825

RESUMEN

Background: As an actin cytoskeleton interactor, PDZ (postsynaptic density 65-discs large-zonula occludens 1) and LIM (abnormal cell lineage 11-isket 1-mechanosensory abnormal 3) domain protein 7 (PDLIM7) was supposed to play an essential role modulating cytoskeleton. Focal adhesions (FAs), which are located at the cytomembrane terminus of actin cytoskeleton, function as a force sensor and can transform the mechanical signal to a biochemical signal. Focal adhesion kinase (FAK) localizes to and regulates signal transduction in FAs, which play an essential role in cell polarity, migration, and invasion. However, whether PDLIM7 is involved in FAs-associated signal transduction and its role in tumor invasion and metastasis remains largely unknown. Methods: A cohort of 80 patients with papillary thyroid carcinoma (PTC) at The Second Affiliated Hospital of Guilin Medical University, as well as 512 PTC samples from The Cancer Genome Atlas thyroid cancer database was utilized to analyze the expression of PDLIM7 and its association with prognosis. Survival data were assessed using Kaplan-Meier curves, whereas clinicopathological characteristics such as age, sex, tumor size, multilocality, extrathyroidal extension, lymph metastases, Hashimoto's thyroiditis, distant metastasis, and TNM stage were considered. Functional assays were performed in vitro and in a xenograft mouse model to assess the role of PDLIM7 in PTC cell lines. The colocalization of PDLIM7 with FAK and integrin alpha V (ITGAV) was determined using immunofluorescence assay and immunoprecipitation assay. Protein expression levels in cell and tissue biopsies were measured through Western blotting and immunohistochemistry. Results: (1) The PDLIM7 protein frequently upregulated in both PTC tissues and cells, and overexpression of PDLIM7 is associated with advanced clinicopathological characteristics. (2) Knockdown of PDLIM7 effectively inhibits cell proliferation, migration, and invasion in PTC cell lines in vitro. (3) Knockdown of PDLIM7 hinders the growth and metastasis of TPC-1 xenografts in vivo. (4) PDLIM7 demonstrates colocalization with both FAK and the FA molecule ITGAV and the knockdown of PDLIM7 resulted in disassembly of FAs and proteosome-dependent degradation of FAK in PTC cell lines. Conclusions: PDLIM7 function as an oncoprotein in PTC to promote metastasis, and a novel underlying mechanism is proposed that PDLIM7 keeps FAK protein from proteosome-dependent degradation.

4.
Aging (Albany NY) ; 15(10): 4391-4410, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37219449

RESUMEN

B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is overexpressed in various cancer types. We found that Bmi-1 mRNA levels were elevated in nasopharyngeal carcinoma (NPC) cell lines. In immunohistochemical analyses, high Bmi-1 levels were observed in not only 5 of 38 non-cancerous nasopharyngeal squamous epithelial biopsies, but also in 66 of 98 NPC specimens (67.3%). High Bmi-1 levels were detected more frequently in T3-T4, N2-N3 and stage III-IV NPC biopsies than in T1-T2, N0-N1 and stage I-II NPC samples, indicating that Bmi-1 is upregulated in advanced NPC. In 5-8F and SUNE1 NPC cells, stable depletion of Bmi-1 using lentiviral RNA interference greatly suppressed cell proliferation, induced G1-phase cell cycle arrest, reduced cell stemness and suppressed cell migration and invasion. Likewise, knocking down Bmi-1 inhibited NPC cell growth in nude mice. Both chromatin immunoprecipitation and Western blotting assays demonstrated that Hairy gene homolog (HRY) upregulated Bmi-1 by binding to its promoter, thereby increasing the stemness of NPC cells. Immunohistochemistry and quantitative real-time PCR analyses revealed that HRY expression correlated positively with Bmi-1 expression in a cohort of NPC biopsies. These findings suggested that HRY promotes NPC cell stemness by upregulating Bmi-1, and that silencing Bmi-1 can suppress NPC progression.


Asunto(s)
Neoplasias Nasofaríngeas , Animales , Ratones , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patología , Ratones Desnudos , Línea Celular Tumoral , Nasofaringe/patología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
5.
Phytother Res ; 37(7): 2979-2994, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36866539

RESUMEN

Aloe-emodin (AE) has been shown to inhibit the proliferation of several cancer cell lines, including human nasopharyngeal carcinoma (NPC) cell lines. In this study, we confirmed that AE inhibited malignant biological behaviors, including cell viability, abnormal proliferation, apoptosis, and migration of NPC cells. Western blotting analysis revealed that AE upregulated the expression of DUSP1, an endogenous inhibitor of multiple cancer-associated signaling pathways, resulting in blockage of the extracellular signal-regulated kinase (ERK)-1/2, protein kinase B (AKT), and p38-mitogen activated protein kinase(p38-MAPK) signaling pathways in NPC cell lines. Moreover, the selective inhibitor of DUSP1, BCI-hydrochloride, partially reversed the AE-induced cytotoxicity and blocked the aforementioned signaling pathways in NPC cells. In addition, the binding between AE and DUSP1 was predicted via molecular docking analysis using AutoDock-Vina software and further verified via a microscale thermophoresis assay. The binding amino acid residues were adjacent to the predicted ubiquitination site (Lys192) of DUSP1. Immunoprecipitation with the ubiquitin antibody, ubiquitinated DUSP1 was shown to be upregulated by AE. Our findings revealed that AE can stabilize DUSP1 by blocking its ubiquitin-proteasome-mediated degradation and proposed an underlying mechanism by which AE-upregulated DUSP1 may potentially target multiple pathways in NPC cells.


Asunto(s)
Aloe , Emodina , Neoplasias Nasofaríngeas , Humanos , Emodina/farmacología , Carcinoma Nasofaríngeo , Ubiquitina , Simulación del Acoplamiento Molecular , Transducción de Señal , Apoptosis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Fosfatasa 1 de Especificidad Dual/metabolismo
6.
Acta Biomater ; 160: 198-210, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36792048

RESUMEN

As a DNA damaging agent, oxaliplatin (OXA) can induce immunogenic cell death (ICD) in tumors to activate the immune system. However, the DNA damage induced by OXA is limited and the ICD effect is not strong enough to enhance anti-tumor efficacy. Here, we propose a strategy to maximize the ICD effect of OXA through the mild hyperthermia generated by nanoparticles with a platinum (IV) prodrug of OXA (Pt(IV)-C16) and a near-infrared-II (NIR-II) photothermal agent IR1061 upon the irradiation of NIR-II light. The mild hyperthermia (43 °C) holds advantages in two aspects: 1) increase the Pt-DNA cross-linking, leading to enhanced DNA damage and apoptosis; 2) induce stronger ICD effects for cancer immunotherapy. We demonstrated that, compared with OXA and photothermal therapy of IR1061 alone, these nanoparticles under NIR-II light irradiation can significantly improve the anti-cancer efficacy against triple-negative breast cancer 4T1 tumor. This new strategy provides an effective way to improve the therapeutic outcome of OXA. STATEMENT OF SIGNIFICANCE: OXA could induce immunogenic cell death (ICD) via stimulating immune responses by increasing tumor cell stress and death, which triggers tumor-specific immune responses to achieve immunotherapy. However, due to the insufficient Pt-DNA crosslinks, the ICD effect triggered by OXA cannot induce robust immune response. Mild hyperthermia has great potential to maximize the therapeutic outcome of oxaliplatin by increasing the Pt-DNA cross-linking to augment the immunoresponse for enhanced cancer immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Oxaliplatino/farmacología , Muerte Celular Inmunogénica , Boratos , Neoplasias/tratamiento farmacológico , Inmunoterapia , ADN , Línea Celular Tumoral
7.
Oxid Med Cell Longev ; 2022: 4479905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225172

RESUMEN

Objective: Examining the role of EBV-miR-BARTs in nasopharyngeal cancer etiology and diagnosis. Method: As the subjects of this study, nasopharyngeal cancer cell lines were chosen and then randomly assigned to one of four groups: the control group, EBV-miR-BART5-3p NC, EBV-miR-BART5-3p mimics, and EBV-miR-BART5-3p inhibitor groups. Utilizing reverse transcription polymerase chain reaction, we determined the levels of gene expression in nasopharyngeal cancer cells that had been treated with EBV-miR-BART5-3p (RT-PCR). The MTT, Transwell, and scratch tests were used to determine the degree to which cells underwent apoptosis, invasion, and migration. The Western blotting method was used in order to examine the protein expression. Result: Compared with normal nasopharyngeal cells, P 0.05 showed that nasopharyngeal cancer cells had greater EBV-miR-BART5-3p expressions and proliferation rates in the control, EBV-miR-BART5-3p NC, and EBV-miR-BART5-3p No statistically significant differences were seen between the mimic groups (P > 0.05); compared with the control group, the proliferation rate of the EBV-miR-BART5-3p inhibitor group was lower with P < 0.05. At a significance threshold of P 0.05, there was no difference in the rates of apoptosis between the control group and the EBV-miR- BART5-3p NC group. Comparing the control group to the EBV-miR-BART5-3p mimics group and the EBV-miR-BART5-3p inhibitors group revealed that the rate of apoptosis was dramatically enhanced in the EBV-miR-BART5-3p inhibitors group but significantly decreased in the control group (P 0.05). When comparing the control group to the EBV-miR-BART5-3p NC group, there was no statistically significant change in the total number of invasive cells (P > 0.05). When comparing the EBV-miR-BART5-3p mimics group to the control group, we found a statistically significant increase in the former and a decrease in the latter (P 0.05). The migration rates of the control group, the EBV-miR-BART5-3p NC group, and the EBV-miR-BART5-3p mimics group did not vary from one another in a way that was statistically significant (P > 0.05). When compared to the control group, the migration rate was considerably (P 0.05) lower in the EBV-miR-BART5-3p inhibitor group. There were no discernible changes identified (P > 0.05) in the levels of Bcl-2 protein expression in the control group, the EBV-miR-BART5-3p NC group, and the EBV-miR-BART5-3p mimic group in a research that compared these three groups. Protein levels of BCL-2 were significantly decreased (P 0.05) in the EBV-miR-BART5-3p inhibitor group, in comparison to the control group. When comparing the control and EBV- miR-BART5-3p NC groups, we found no statistically significant differences in Bax and Caspase-3 protein expression levels (P > 0.05). The protein expressions of Bax and Caspase-3 were statistically significantly greater in the EBV-miR-BART5-3p contrast between the inhibitor and control groups. When comparing the protein expressions of MMP-2 and MMP-9 between the control group, the EBV-miR-BART5-3p NC group, and the EBV-miR-BART5-3p mimics group, there was no statistically significant change (P > 0.05). Protein levels of MMP-2 and MMP-9 were inhibited by EBV-miR-BART5-3p to a greater extent (P 0.05) in the experimental group compared to the control group. Conclusion: The understanding that inhibiting expression of EBV-miR-BART5-3p might reduce the risk of developing nasopharyngeal cancer may help direct clinical treatment for the condition.


Asunto(s)
MicroARNs , Neoplasias Nasofaríngeas , Apoptosis , Caspasa 3/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Herpesvirus Humano 4/genética , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , MicroARNs/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Proteína X Asociada a bcl-2/genética
8.
Endokrynol Pol ; 73(6): 942-946, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35971926

RESUMEN

Streptozotocin (STZ)-induced diabetes rodent models are widely used to study the pathogenesis and metabolic function in diabetes (DM). The aim of this study was to assess the antioxidant effect of curcumin in STZ-induced type 2 diabetes mellitus (T2DM). In this research, rats were randomly divided into 3 groups (8 in each group): a nondiabetic group (Control), a diabetic group (DM), and a curcumin treatment group (DM + Cur 200 mg/kg group). Meanwhile, after intraperitoneal injection (i.p.), associated-oxidative stress parameters were observed, malondialdehyde (MDA) was decreased, and glutathione peroxidase (GPX) and super oxide dismutase (SOD) were restored in pancreatic tissues of curcumin-treated DM rats. In addition, curcumin improved the survival and function of islet cells with decreased cell apoptosis in Langerhans islet and increased insulin secretion in the STZ-induced T2DM rat model. Our findings suggest that curcumin is a potent candidate for the prevention and therapy of DM.


Asunto(s)
Curcumina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Ratas , Animales , Antioxidantes/efectos adversos , Curcumina/efectos adversos , Diabetes Mellitus Tipo 2/metabolismo , Estreptozocina/efectos adversos , Ratas Wistar , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucemia/metabolismo
9.
Dis Markers ; 2022: 2628879, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769816

RESUMEN

Purpose: We previously reported that G protein-coupled receptor kinase (GRK) 4 halts cell cycle progression and induces cellular senescence in HEK293 cells. The present study was aimed at assessing the prognostic value of GRK4 in hepatocellular carcinoma (HCC). Methods: GRK4 expression was detected by immunohistochemistry in paired tumoral and peritumoral tissues of 325 HCC patients. One hundred and twenty-six patients from Western China were utilized as a training cohort to develop a nomogram, while 86 patients from Eastern China were used as a validation cohort. The proliferation and migration of lentiviral-GRK4 expressing HepG2 cells were determined by MTT and wound healing assays. Results: GRK4 was differentially expressed in HCC tissues. Tumoral GRK4 intensity, tumor type, and T stage were independent prognostic factors and used to form a nomogram for predicting overall survival (OS), which obtained a good concordance index of 0.82 and 0.77 in training and validation cohort, respectively. The positive and negative prediction values with nomogram were, respectively, 83% and 75% in training cohort and 100% and 52% in validation cohort. Patients with nomogram scores > 32 and 78 showed high risk for OS. Proliferation and motility capabilities were significantly restrained in GRK4-overexpressing HCC cells. Discussion. Low GRK4 expression in HCC tumor tissues indicates poor clinical outcomes. A prognostic nomogram including tumoral GRK4 expression would improve the predictive accuracy of OS in HCC patients. We also demonstrated that GRK4 overexpression inhibits proliferation and migration of HCC cells. The molecular mechanism underlying is worth further study.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patología , Células HEK293 , Humanos , Neoplasias Hepáticas/patología , Pronóstico , Receptores Acoplados a Proteínas G
10.
J Hepatocell Carcinoma ; 9: 57-67, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186805

RESUMEN

BACKGROUND: Sarcomatoid hepatocellular carcinoma (sHCC), a highly aggressive subtype of hepatocellular carcinoma (HCC), mostly transforms from classical hepatocellular carcinoma (cHCC). The study intended to explore the role of C-terminal binding protein 1 (CtBP1) in sarcomatoid transformation of hepatocellular carcinoma. METHODS: Western blotting and/or immunohistochemistry were used to confirm the expression of CtBP1 and other proteins in HCC cells, xenografts and clinical tissue samples. CtBP1 shRNA-expressing lentivirus was used to infect HepG2 cells to construct CtBP1 knockdown cells. Cell migration was determined by scratch wound assays and Transwell assays. Immunofluorescence was used to label the a-tubulin cytoskeleton to evaluate cell morphology. HepG2 cells were inoculated subcutaneously in nude mice to construct xenografts and beneath the liver capsule to evaluate in vivo metastasis. RESULTS: Compared to that in the cHCC area, CtBP1 expression was significantly upregulated in the sHCC area, as shown by immunohistochemistry. HE staining showed that cells in the sHCC area were spindle-shaped, while those in the cHCC area were polygonal. Immunohistochemically, the epithelial markers pancytokeratin (CK) and E-cadherin were partially or completely lost, while the expression of the mesenchymal marker vimentin was upregulated in the sHCC area. Moreover, HepG2, an HCC cell line with high expression of CtBP1, autonomously underwent sarcomatoid transformation, showing a sarcomatoid morphology and phenotype. HIF1a expression was upregulated in epithelial cells adjacent to the sHCC area. Hypoxia upregulated CtBP1 protein expression and induced an EMT phenotype with increased migration and a spindle-shaped morphology in HepG2 cells. Knockdown of CtBP1 partially reversed the EMT phenotype induced by hypoxia. Silencing CtBP1 completely blocked the sarcomatoid transformation of subcutaneous xenografts and decreased lung metastasis in subcapsular xenografts of the liver in nude mice. CONCLUSION: CtBP1 plays a key role in hypoxia-induced EMT and sarcomatoid transformation in HCC and could be a candidate target for the management of sHCC.

11.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638866

RESUMEN

RBM10 is an RNA-binding protein that regulates alternative splicing (AS). It localizes to the extra-nucleolar nucleoplasm and S1-1 nuclear bodies (NBs) in the nucleus. We investigated the biological significance of this localization in relation to its molecular function. Our analyses, employing deletion mutants, revealed that RBM10 possesses two S1-1 NB-targeting sequences (NBTSs), one in the KEKE motif region and another in the C2H2 Zn finger (ZnF). These NBTSs act synergistically to localize RBM10 to S1-1 NBs. The C2H2 ZnF not only acts as an NBTS, but is also essential for AS regulation by RBM10. Moreover, RBM10 does not participate in S1-1 NB formation, and without alterations of RBM10 protein levels, its NB-localization changes, increasing as cellular transcriptional activity declines, and vice versa. These results indicate that RBM10 is a transient component of S1-1 NBs and is sequestered in NBs via its NBTSs when cellular transcription decreases. We propose that the C2H2 ZnF exerts its NB-targeting activity when RBM10 is unbound by pre-mRNAs, and that NB-localization of RBM10 is a mechanism to control its AS activity in the nucleus.


Asunto(s)
Empalme Alternativo , Núcleo Celular/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Núcleo Celular/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Señales de Localización Nuclear/genética , Dominios Proteicos , Transporte de Proteínas , Proteínas de Unión al ARN/genética
12.
Aging (Albany NY) ; 13(17): 21497-21512, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34491904

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a highly malignant gastrointestinal cancer with a high recurrence rate and poor prognosis. Although N6-methyladenosine (m6A), the most abundant epitranscriptomic modification of mRNAs, has been implicated in several cancers, little is known about its participation in ESCC progression. We found reduced expression of ALKBH5, an m6A demethylase, in ESCC tissue specimens with a more pronounced effect in T3-T4, N1-N3, clinical stages III-IV, and histological grade III tumors, suggesting its involvement in advanced stages of ESCC. Exogenous expression of ALKBH5 inhibited the in vitro proliferation of ESCC cells, whereas depletion of endogenous ALKBH5 markedly enhanced ESCC cell proliferation in vitro. This suggests ALKBH5 exerts anti-proliferative effects on ESCC growth. Furthermore, ALKBH5 overexpression suppressed tumor growth of Eca-109 cells in nude mice; conversely, depletion of endogenous ALKBH5 accelerated tumor growth of TE-13 cells in vivo. The growth-inhibitory effects of ALKBH5 overexpression are partly attributed to a G1-phase arrest. In addition, ALKBH5 overexpression reduced the in vitro migration and invasion of ESCC cells. Altogether, our findings demonstrate that the loss of ALKBH5 expression contributes to ESCC malignancy.


Asunto(s)
Adenosina/análogos & derivados , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Regulación Neoplásica de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Adenosina/metabolismo , Adulto , Anciano , Animales , Carcinogénesis , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Esófago/metabolismo , Esófago/patología , Femenino , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Pathol Oncol Res ; 27: 608582, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34257571

RESUMEN

The morphological variability and genetic complexity of fibroblastic sarcoma makes its diagnosis and treatment a challenge. High-mobility group box 1 protein (HMGB1), which functions as a DNA chaperone and a prototypical damage-associated molecular pattern, plays a paradoxical role in cancer. However, the expression pattern and role of HMGB1 in fibroblastic sarcomas is ill defined. By immunostaining of 95 tissue microarray cores of fibroblastic sarcomas, HMGB1 was found to be expressed in most tumor tissues. Nuclear HMGB1 translocation to cytoplasm was observed both in tumor cells and vascular endothelial cells. A visible number of tumor-associated myeloid cells including CD68+ and CD163+ macrophages and CD33+ myeloid cells were also detected in most tumor tissues. HMGB1 translocation was not only associated with CD68, CD163, and CD33 density, but also with disease progression. These results imply that HMGB1, an important regulator of the tumor microenvironment, is associated with tumor-associated myeloid cells and involved in the progression of fibroblastic sarcomas; HMGB1 may serve as a promising prognostic biomarker and a potential therapeutic target for fibroblastic sarcoma.


Asunto(s)
Proteína HMGB1/metabolismo , Células Mieloides/metabolismo , Sarcoma/patología , Neoplasias de los Tejidos Blandos/patología , Macrófagos Asociados a Tumores/metabolismo , Adulto , Anciano , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Células Mieloides/inmunología , Transporte de Proteínas/fisiología , Sarcoma/inmunología , Sarcoma/metabolismo , Neoplasias de los Tejidos Blandos/inmunología , Neoplasias de los Tejidos Blandos/metabolismo , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología
14.
J Cancer ; 12(15): 4463-4477, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149910

RESUMEN

Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has a poor prognosis due to the high incidence of invasion and metastasis-related progression. However, the underlying mechanism remains elusive, and valuable biomarkers for predicting invasion, metastasis, and poor prognosis of HCC patients are still lacking. Methods: Immunohistochemistry (IHC) was performed on HCC tissues (n = 325), and the correlations between MST4 expression of the clinical HCC tissues, the clinicopathologic features, and survival were further evaluated. The effects of MST4 on HCC cell migratory and invasive properties in vitro were evaluated by Transwell and Boyden assays. The intrahepatic metastasis mouse model was established to evaluate the HCC metastasis in vivo. The PI3K inhibitor, LY294002, and a specific siRNA against Snail1 were used to investigate the roles of PI3K/AKT pathway and Snail1 in MST4-regulated EMT, migration, and invasion of HCC cells, respectively. Results: In this study, by comprehensively analyzing our clinical data, we discovered that low MST4 expression is highly associated with the advanced progression of HCC and serves as a prognostic biomarker for HCC patients of clinical-stage III-IV. Functional studies indicate that MST4 inactivation induces epithelial-to-mesenchymal transition (EMT) of HCC cells, promotes their migratory and invasive potential in vitro, and facilitates their intrahepatic metastasis in vivo, whereas MST4 overexpression exhibits the opposite phenotypes. Mechanistically, MST4 inactivation elevates the expression and nuclear translocation of Snail1, a key EMT transcription factor (EMT-TF), through the PI3K/AKT signaling pathway, thus inducing the EMT phenotype of HCC cells, and enhancing their invasive and metastatic potential. Moreover, a negative correlation between MST4 and p-AKT, Snail1, and Ki67 and a positive correlation between MST4 and E-cadherin were determined in clinical HCC samples. Conclusions: Our findings indicate that MST4 suppresses EMT, invasion, and metastasis of HCC cells by modulating the PI3K/AKT/Snail1 axis, suggesting that MST4 may be a potential prognostic biomarker for aggressive and metastatic HCC.

15.
J Cancer ; 11(17): 5106-5117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742458

RESUMEN

Objective: MST4 has exhibited functions in regulating cell polarity, Golgi apparatus, cell migration, and cancer. Mechanistically, it affects the activity of p-ERK, Hippo-YAP pathway and autophagy. The aim of this study is to further examine the functions of MST4 in hepatocellular carcinoma (HCC) and the underlying mechanism. Methods: The expression level of MST4 in HCC and noncancer adjacent liver tissues was determined by qRT-PCR and immunohistochemistry staining. Wild-type MST4 (MST4) and a dominant-negative mutant of MST4 (dnMST4) were overexpressed in HCC cell lines, respectively. CCK-8 assay, EdU incorporation assay, and soft agar assay were used to determine cell proliferation in vitro. The xenograft mouse model was employed to determine HCC cell growth in vivo. Cell cycle analysis was performed by PI staining and flow cytometry. The expression of key members in PI3K/AKT pathway was detected by Western blot analysis. Results: In our study, we reported new evidence that MST4 was frequently down-regulated in HCC tissues. Gain-of-function and loss-of-function experiments demonstrated that MST4 negatively regulated in vitro HCC cell proliferation. Additionally, MST4 overexpression suppressed Bel-7404 cell tumor growth in nude mice. Further experiments revealed that the growth-inhibitory effect of MST4 overexpression was partly due to a G1-phase cell cycle arrest. Importantly, mechanistic investigations suggested that dnMST4 significantly elevated the phosphorylation levels of key members of PI3K/AKT pathway, and the selective PI3K inhibitor LY294002 can reverse the proliferation-promoting effect of dnMST4. Conclusions: Overall, our results provide a new insight into the clinical significance, functions and molecular mechanism of MST4 in HCC, suggesting that MST4 might have a potential therapeutic value in the HCC clinical treatment.

16.
Mol Med Rep ; 22(1): 51-56, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32377721

RESUMEN

MicroRNA (miR)-19b is expressed in various types of tumors and may serve as a potential therapeutic target. The miR­17­92 cluster is upregulated in nasopharyngeal carcinoma (NPC) tissues and cells. miR­19b is a member of the miR­17­92 cluster; however, its expression and function in NPC are largely unknown. The present study aimed to investigate the expression and function of miR­19b in NPC cells. The miRCURY LNATM miRNA Inhibitor (miR­19b inhibitor and negative control) were transfected into C666­1 cells. The proliferation, apoptosis and migration of the cells were subsequently detected by the Cell Counting Kit­8 assay, flow cytometry and Transwell assay, respectively. Additionally, the expression of STAT3 signaling pathway­associated proteins [STAT3, pSTAT3 and suppressor of cytokine signaling 1 (SOCS1)] and the transcriptional targets of pSTAT3 [Bcl­2, myeloid leukemia protein 1 (Mcl­1) and cyclin D1] were detected by western blotting. The miR­19b inhibitor inhibited proliferation and migration and induced apoptosis of C666­1 cells. Furthermore, the miR­19b inhibitor upregulated the expression of SOCS1, a predicted target gene of miR­19b, and decreased the phosphorylation of STAT3 at Tyr705 and Ser727. These data indicated that upregulation of SOCS1, an endogenous inhibitor of STAT3 phosphorylation, attenuated the STAT3 signaling pathway in C666­1 cells. Moreover, the expression level of the proproliferative protein cyclin D1 and antiapoptotic proteins Mcl­1 and Bcl­2 was significantly decreased following transfection with the miR­19b inhibitor. The aforementioned three proteins are downstream transcriptional targets of the activated STAT3 signaling pathway. The results of the present study revealed that inhibition of miR­19b negatively modulated the malignant behavior of NPC cells via the STAT3 signaling pathway. Therefore, miR­19b inhibition may serve as a novel therapeutic target for the treatment of NPC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Factor de Transcripción STAT3/genética
17.
J Cell Mol Med ; 24(11): 6438-6447, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32307891

RESUMEN

Cisplatin resistance is one of the main obstacles in the treatment of advanced nasopharyngeal carcinoma (NPC). AKR1C1 is a member of the Aldo-keto reductase superfamily (AKRs), which converts aldehydes and ketones to their corresponding alcohols and has been reported to be involved in chemotherapeutic resistance of multiple drugs. The expression and function of AKR1C1 in NPC have not been reported until now. The aim of this research was to investigate the expression of AKR1C1 and it is role in cisplatin resistance in NPC. AKR1C1 protein expression was detected by immunohistochemistry in human NPC tissues and by Western blot assays in NPC and immortalized nasopharyngeal epithelial cells. The effects of AKR1C1 knock-down by siRNA on proliferation, migration and invasion in NPC cells were evaluated by CCK8, wound healing and transwell assays. To evaluate the effects of AKR1C1 silencing on cisplatin sensitivity in NPC cells, CCK8 assays were used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and flow cytometry and DAPI staining were used to detect cell apoptosis. AKR1C1 down-regulation was associated with advanced clinicopathological characters such as larger tumor size, more lymphatic nodes involvement, with metastasis and later clinical stages, while AKR1C1 down-regulation was a good prognostic factor for overall survival (OS) in NPC patients. In vitro study showed that AKR1C1 was not directly involved in the malignant biological behaviours such as proliferation, cell cycle progression and migration of NPC cells, whereas AKR1C1 knock-down could enhance cisplatin sensitivity of NPC cells. These results suggest that AKR1C1 is a potential marker for predicting cisplatin response and could serve as a molecular target to increase cisplatin sensitivity in NPC.


Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/metabolismo , Cisplatino/uso terapéutico , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Pronóstico
18.
Int J Med Sci ; 17(7): 953-964, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308549

RESUMEN

MicroRNA-19 (miR-19) is identified as the key oncogenic component of the miR-17-92 cluster. When we explored the functions of the dysregulated miR-19 in lung cancer, microarray-based data unexpectedly demonstrated that some immune and inflammatory response genes (i.e., IL32, IFI6 and IFIT1) were generally down-regulated by miR-19 overexpression in A549 cells, which prompted us to fully investigate whether the miR-19 family (i.e., miR-19a and miR-19b-1) was implicated in regulating the expression of immune and inflammatory response genes in cancer cells. In the present study, we observed that miR-19a or miR-19b-1 overexpression by miRNA mimics in the A549, HCC827 and CNE2 cells significantly downregulated the expression of interferon (IFN)-regulated genes (i.e., IRF7, IFI6, IFIT1, IFITM1, IFI27 and IFI44L). Furthermore, the ectopic miR-19a or miR-19b-1 expression in the A549, HCC827, CNE2 and HONE1 cells led to a general downward trend in the expression profile of major histocompatibility complex (MHC) class I genes (such as HLA-B, HLA-E, HLA-F or HLA-G); conversely, miR-19a or miR-19b-1 inhibition by the miRNA inhibitor upregulated the aforementioned MHC Class I gene expression, suggesting that miR-19a or miR-19b-1 negatively modulates MHC Class I gene expression. The miR-19a or miR-19b-1 mimics reduced the expression of interleukin (IL)-related genes (i.e., IL1B, IL11RA and IL6) in the A549, HCC827, CNE2 or HONE1 cells. The ectopic expression of miR-19a or miR-19b-1 downregulated IL32 expression in the A549 and HCC827 cells and upregulated IL32 expression in CNE2 and HONE1 cells. In addition, enforced miR-19a or miR-19b-1 expression suppressed IL-6 production by lung cancer and nasopharyngeal carcinoma (NPC) cells. Taken together, these findings demonstrate, for the first time, that miR-19 can modulate the expression of IFN-induced genes and MHC class I genes in human cancer cells, suggesting a novel role of miR-19 in linking inflammation and cancer, which remains to be fully characterized.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes MHC Clase I , MicroARNs/genética , Células A549 , Línea Celular Tumoral , Humanos , Interferones/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucinas/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética
19.
Cancer Manag Res ; 11: 7377-7389, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31496799

RESUMEN

BACKGROUND: Most Epstein-Barr virus (EBV)-positive cells lose the EBV episomes upon prolonged propagation. PURPOSE: The purposes of this study were to establish a simple cell model for nasopharyngeal carcinoma (NPC) research by introducing a plasmid with the EBV genome into NPC cells and then to investigate the resulting changes in malignant biological behaviour and NPC-associated signalling pathways. METHODS: HONE1 NPC cells were transfected with F-factor plasmids including the EBV genome (HONE1-EBV cells). Then cell proliferation, migration, cell cycle distribution and apoptosis were evaluated in vitro by using CCK8, transwell and flow cytometry assays respectively. EBV-encoded proteins and cell signal tranducting proteins were detected by western blot assays. EBV-encoded RNAs were detected by in situ hybridization. EBV particles were assayed by transmission electron microscope (TEM). The morphology of cells were detected by immunofluorescence assays for alpha-tubulin. RESULTS: Latent membrane protein 1 (LMP1), latent membrane protein 2A (LMP2A), Epstein-Barr nuclear antigen 1 (EBNA1) and EBV-encoded small RNAs (EBERs) were successfully expressed in HONE1-EBV cells. No EBV particles were founded by TEM. Introduction of the EBV genome significantly promoted proliferation, cell cycle progression and migration and inhibited apoptosis in HONE1 cells. Immunofluorescence assays showed that the morphology of HONE1-EBV cells changed into spindle. Furthermore, EBV genome introduction significantly inhibited the JAK/STAT signalling pathway, while it activated the PI3K-AKT and NF-κB signalling pathways in HONE1 cells. CONCLUSION: These findings suggest that F-factor plasmid-mediated EBV genome introduction was successful in constructing an EBV positive cell model, which showed deteriorated biological behavior and activated NPC-associated signalling pathways. This model can serve as a good tool for studying EBV in NPC, but the subtle differences in cancer-associated pathways must be considered.

20.
Cancer Manag Res ; 11: 6959-6969, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31413636

RESUMEN

Purpose: The correlation of cold-inducible RNA-binding protein (Cirbp) expression with clinicopathological features including patient prognosis in nasopharyngeal carcinoma (NPC) was investigated. Methods: The expression of Cirbp in NPC cell lines and tissue specimens was examined by qRT-PCR or immunohistochemistry (IHC). Results: Immunohistochemistry (IHC) results showed that high Cirbp expression was detected in 61 of 61 non-cancerous nasopharyngeal squamous epithelial biopsies, whereas the significantly reduced expression of Cirbp was observed in NPC specimens. In addition, IHC assay for Cirbp protein illustrated that the cells of 177 NPC samples and nasopharyngeal squamous epithlial cells displayed strong signals in nuclei and faint signals in cytoplasm, whereas Cirbp protein is mainly detected in the cell's cytoplasm in many other cancers. More importantly, TNM classification displayed that the low expression of Cirbp was more frequently observed in T3-T4, N2-N3, M1 and III-IV NPC biopsies, and undifferentiated carcinoma (UDC) than T1-T2, N0-N1, M0 and I-II tumors, and differentiated nonkeratinizing carcinoma (DNKC), suggesting that Cirbp loss is a key molecular event in advanced cases of NPC. Kaplan-Meier survival analysis indicated that NPC patients showing lower Cirbp expression had a significantly shorter overall survival time than those with high Cirbp expression. Multivariate analysis suggested that the level of Cirbp expression was an independent prognostic indicator for NPC survival. Finally, we revealed a significant positive association between Cirbp expression and E-cadherin, and a notable negative correlation between Cirbp expression and Ki67 labeling index in NPC biopsies. Conclusion: Collectively, these findings demonstrate that loss of Cirbp expression is correlated with malignant progression and poor prognosis in NPC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...