Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antiviral Res ; 224: 105834, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369246

RESUMEN

Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.


Asunto(s)
Anticuerpos Neutralizantes , Virosis , Humanos , Internalización del Virus , Proteínas del Envoltorio Viral , Antivirales/farmacología , Anticuerpos Antivirales
2.
Ecotoxicol Environ Saf ; 270: 115925, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38183752

RESUMEN

Disinfection by-products (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs), have attracted attention due to their carcinogenic properties, leading to varying conclusions. This meta-analysis aimed to evaluate the dose-response relationship and the dose-dependent effect of DBPs on cancer risk. We performed a selective search in PubMed, Web of Science, and Embase databases for articles published up to September 15th, 2023. Our meta-analysis eventually included 25 articles, encompassing 8 cohort studies with 6038,525 participants and 10,668 cases, and 17 case-control studies with 10,847 cases and 20,702 controls. We observed a positive correlation between increased cancer risk and higher concentrations of total trihalomethanes (TTHM) in water, longer exposure durations, and higher cumulative TTHM intake. These associations showed a linear trend, with relative risks (RRs) and 95 % confidence intervals (CIs) being 1.02 (1.01-1.03), 1.04 (1.02-1.06), and 1.02 (1.00-1.03), respectively. Gender-specific analyses revealed slightly U-shaped relationships in both males and females, with males exhibiting higher risks. The threshold dose for TTHM in relation to cancer risk was determined to be 55 µg/L for females and 40 µg/L for males. A linear association was also identified between bladder cancer risk and TTHM exposure, with an RR and 95 % CI of 1.08 (1.05-1.11). Positive linear associations were observed between cancer risk and exposure to chloroform, bromodichloromethane (BDCM), and HAA5, with RRs and 95 % CIs of 1.02 (1.01-1.03), 1.33 (1.18-1.50), and 1.07 (1.03-1.12), respectively. Positive dose-dependent effects were noted for brominated THMs above 35 µg/L and chloroform above 75 µg/L. While heterogeneity was observed in the studies for quantitative synthesis, no publication bias was detected. Exposure to TTHM, chloroform, BDCM, or HAA5 may contribute to carcinogenesis, and the risk of cancer appears to be dose-dependent on DBP exposure levels. A cumulative effect is suggested by the positive correlation between TTHM exposure and cancer risk. Bladder cancer and endocrine-related cancers show dose-dependent and positive associations with TTHM exposure. Males may be more susceptible to TTHM compared to females.


Asunto(s)
Desinfectantes , Neoplasias de la Vejiga Urinaria , Contaminantes Químicos del Agua , Masculino , Femenino , Humanos , Desinfección , Cloroformo/análisis , Trihalometanos/toxicidad , Trihalometanos/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Desinfectantes/toxicidad
3.
Nat Struct Mol Biol ; 30(7): 980-990, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37430064

RESUMEN

The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. Here, we have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and an animal model with previously prevalent variants. BA.2 S can fuse membranes slightly more efficiently than Omicron BA.1, but still less efficiently than other previous variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces, leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility of the Omicron subvariants.


Asunto(s)
COVID-19 , Animales , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
4.
Sci Adv ; 8(49): eabq6527, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36475798

RESUMEN

As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) evolves to escape natural antibodies, it also loses sensitivity to therapeutic antibody drugs. By contrast, evolution selects for binding to ACE2, the cell-surface receptor required for SARS-CoV-2 infection. Consistent with this, we find that an ACE2 decoy neutralizes antibody-resistant variants, including Omicron, with no loss in potency. To identify design features necessary for in vivo activity, we compare several enzymatically inactive, Fc effector-silenced ACE2-Fc decoys. Inclusion of the ACE2 collectrin-like domain not only improves affinity for the S protein but also unexpectedly extends serum half-life and is necessary to reduce disease severity and viral titer in Syrian hamsters. Fc effector function is not required. The activity of ACE2 decoy receptors is due, in part, to their ability to trigger an irreversible structural change in the viral S protein. Our studies provide a new understanding of how ACE2 decoys function and support their development as therapeutics to treat ACE2-dependent coronaviruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos
5.
bioRxiv ; 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35547850

RESUMEN

The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. We have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and animal model with previously prevalent variants. BA.2 S can fuse membranes more efficiently than Omicron BA.1, mainly due to lack of a BA.1-specific mutation that may retard the receptor engagement, but still less efficiently than other variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lungs than the early G614 (B.1) strain in the absence of pre-existing immunity, possibly explaining the increased transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility for the Omicron subvariants.

6.
Sci Immunol ; 7(78): eabp8328, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35549298

RESUMEN

Key features of immune memory are greater and faster antigen-specific antibody responses to repeat infection. In the setting of immune-evading viral evolution, it is important to understand how far antibody memory recognition stretches across viral variants when memory cells are recalled to action by repeat invasions. It is also important to understand how immune recall influences longevity of secreted antibody responses. We analyzed SARS-CoV-2 variant recognition; dynamics of memory B cells; and secreted antibody over time after infection, vaccination, and boosting. We find that a two-dose SARS-CoV-2 vaccination regimen given after natural infection generated greater longitudinal antibody stability and induced maximal antibody magnitudes with enhanced breadth across Beta, Gamma, Delta and Omicron variants. A homologous third messenger RNA vaccine dose in COVID-naïve individuals conferred greater cross-variant evenness of neutralization potency with stability that was equal to the hybrid immunity conferred by infection plus vaccination. Within unvaccinated individuals who recovered from COVID, enhanced antibody stability over time was observed within a subgroup of individuals who recovered more quickly from COVID and harbored significantly more memory B cells cross-reactive to endemic coronaviruses early after infection. These cross-reactive clones map to the conserved S2 region of SARS-CoV-2 spike with higher somatic hypermutation levels and greater target affinity. We conclude that SARS-CoV-2 antigen challenge histories in humans influence not only the speed and magnitude of antibody responses but also functional cross-variant antibody repertoire composition and longevity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19 , Anticuerpos
7.
Cell Rep ; 39(4): 110729, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35452593

RESUMEN

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), bearing an unusually high number of mutations, has become a dominant strain in many countries within several weeks. We report here structural, functional, and antigenic properties of its full-length spike (S) protein with a native sequence in comparison with those of previously prevalent variants. Omicron S requires a substantially higher level of host receptor ACE2 for efficient membrane fusion than other variants, possibly explaining its unexpected cellular tropism. Mutations not only remodel the antigenic structure of the N-terminal domain of the S protein but also alter the surface of the receptor-binding domain in a way not seen in other variants, consistent with its remarkable resistance to neutralizing antibodies. These results suggest that Omicron S has acquired an extraordinary ability to evade host immunity by excessive mutations, which also compromise its fusogenic capability.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Mutación/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
8.
Science ; 374(6573): 1353-1360, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34698504

RESUMEN

The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report the structure, function, and antigenicity of its full-length spike (S) trimer as well as those of the Gamma and Kappa variants, and compare their characteristics with the G614, Alpha, and Beta variants. Delta S can fuse membranes more efficiently at low levels of cellular receptor angiotensin converting enzyme 2 (ACE2), and its pseudotyped viruses infect target cells substantially faster than the other five variants, possibly accounting for its heightened transmissibility. Each variant shows different rearrangement of the antigenic surface of the amino-terminal domain of the S protein but only makes produces changes in the receptor binding domain (RBD), making the RBD a better target for therapeutic antibodies.


Asunto(s)
Evasión Inmune , Fusión de Membrana , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Antígenos Virales/inmunología , Línea Celular , Epítopos/inmunología , Humanos , Modelos Moleculares , Mutación , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Receptores de Coronavirus/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/fisiología
9.
Curr Opin Virol ; 50: 173-182, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34534731

RESUMEN

The COVID-19 (coronavirus disease 2019) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to loss of human life in millions and devastating socio-economic consequences worldwide. The disease has created urgent needs for intervention strategies to control the crisis and meeting these needs requires a deep understanding of the structure-function relationships of viral proteins and relevant host factors. The trimeric spike (S) protein of the virus decorates the viral surface and is an important target for development of diagnostics, therapeutics and vaccines. Rapid progress in the structural biology of SARS-CoV-2 S protein has been made since the early stage of the pandemic, advancing our knowledge on the viral entry process considerably. In this review, we summarize our latest understanding of the structure of the SARS-CoV-2 S protein and discuss the implications for vaccines and therapeutics.


Asunto(s)
Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/química , Sitios de Unión , Vacunas contra la COVID-19/inmunología , Dominios Proteicos , Glicoproteína de la Espiga del Coronavirus/fisiología
10.
bioRxiv ; 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34426810

RESUMEN

The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report here structure, function and antigenicity of its full-length spike (S) trimer in comparison with those of other variants, including Gamma, Kappa, and previously characterized Alpha and Beta. Delta S can fuse membranes more efficiently at low levels of cellular receptor ACE2 and its pseudotyped viruses infect target cells substantially faster than all other variants tested, possibly accounting for its heightened transmissibility. Mutations of each variant rearrange the antigenic surface of the N-terminal domain of the S protein in a unique way, but only cause local changes in the receptor-binding domain, consistent with greater resistance particular to neutralizing antibodies. These results advance our molecular understanding of distinct properties of these viruses and may guide intervention strategies.

11.
Science ; 373(6555): 642-648, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34168070

RESUMEN

Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains in the COVID-19 pandemic. We report here cryo-electron microscopy structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Amino acid substitutions in the B.1.1.7 protein increase both the accessibility of its receptor binding domain and the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement may account for the increased transmissibility. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, making it resistant to some potent neutralizing antibodies. These findings provide structural details on how SARS-CoV-2 has evolved to enhance viral fitness and immune evasion.


Asunto(s)
COVID-19/virología , Evasión Inmune , SARS-CoV-2/química , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química , Receptores de Coronavirus/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
12.
bioRxiv ; 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33880477

RESUMEN

Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains that continue to fuel the COVID-19 pandemic despite intensive vaccination efforts throughout the world. We report here cryo-EM structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Mutations in the B.1.1.7 protein increase the accessibility of its receptor binding domain and also the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement can account for the increased transmissibility and risk of mortality as the variant may begin to infect efficiently infect additional cell types expressing low levels of ACE2. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, rendering complete resistance to some potent neutralizing antibodies. These findings provide structural details on how the wide spread of SARS-CoV-2 enables rapid evolution to enhance viral fitness and immune evasion. They may guide intervention strategies to control the pandemic.

13.
Viruses ; 13(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922579

RESUMEN

HIV-1 (human immunodeficiency virus type 1) infection begins with the attachment of the virion to a host cell by its envelope glycoprotein (Env), which subsequently induces fusion of viral and cell membranes to allow viral entry. Upon binding to primary receptor CD4 and coreceptor (e.g., chemokine receptor CCR5 or CXCR4), Env undergoes large conformational changes and unleashes its fusogenic potential to drive the membrane fusion. The structural biology of HIV-1 Env and its complexes with the cellular receptors not only has advanced our knowledge of the molecular mechanism of how HIV-1 enters the host cells but also provided a structural basis for the rational design of fusion inhibitors as potential antiviral therapeutics. In this review, we summarize our latest understanding of the HIV-1 membrane fusion process and discuss related therapeutic strategies to block viral entry.


Asunto(s)
Inhibidores de Fusión de VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Fusión de Membrana/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Antirretrovirales/farmacología , Inhibidores de Fusión de VIH/clasificación , Infecciones por VIH/virología , Humanos
14.
Science ; 372(6541): 525-530, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33727252

RESUMEN

Substitution for aspartic acid (D) by glycine (G) at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to facilitate rapid viral spread. The G614 strain and its recent variants are now the dominant circulating forms. Here, we report cryo-electron microscopy structures of a full-length G614 S trimer, which adopts three distinct prefusion conformations that differ primarily by the position of one receptor-binding domain. A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer-effectively increasing the number of functional spikes and enhancing infectivity-and to modulate structural rearrangements for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.


Asunto(s)
SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , COVID-19/virología , Microscopía por Crioelectrón , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de Coronavirus/química , Receptores de Coronavirus/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
15.
Nat Struct Mol Biol ; 28(2): 202-209, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432247

RESUMEN

Effective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a membrane-bound carboxypeptidase that forms a dimer and serves as the cellular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2 is also a key negative regulator of the renin-angiotensin system that modulates vascular functions. We report here the properties of a trimeric ACE2 ectodomain variant, engineered using a structure-based approach. The trimeric ACE2 variant has a binding affinity of ~60 pM for the spike protein of SARS­CoV­2 (compared with 77 nM for monomeric ACE2 and 12-22 nM for dimeric ACE2 constructs), and its peptidase activity and the ability to block activation of angiotensin II receptor type 1 in the renin-angiotensin system are preserved. Moreover, the engineered ACE2 potently inhibits SARS­CoV­2 infection in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Antivirales/química , Tratamiento Farmacológico de COVID-19 , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/uso terapéutico , Antivirales/uso terapéutico , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Ingeniería de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapéutico , SARS-CoV-2/fisiología
16.
bioRxiv ; 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33083806

RESUMEN

Substitution for aspartic acid by glycine at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the ongoing pandemic, appears to facilitate rapid viral spread. The G614 variant has now replaced the D614-carrying virus as the dominant circulating strain. We report here cryo-EM structures of a full-length S trimer carrying G614, which adopts three distinct prefusion conformations differing primarily by the position of one receptor-binding domain (RBD). A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer, effectively increasing the number of functional spikes and enhancing infectivity. The loop transition may also modulate structural rearrangements of S protein required for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.

17.
bioRxiv ; 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32995768

RESUMEN

Effective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a carboxypeptidase that forms a dimer and serves as the cellular receptor for SARS-CoV-2. It is also a key negative regulator of the renin-angiotensin system (RAS), conserved in mammals, which modulates vascular functions. We report here the properties of a trimeric ACE2 variant, created by a structure-based approach, with binding affinity of ~60 pM for the spike (S) protein of SARS-CoV-2, while preserving the wildtype peptidase activity as well as the ability to block activation of angiotensin II receptor type 1 in the RAS. Moreover, the engineered ACE2 potently inhibits infection of SARS-CoV-2 in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.

18.
Cell Host Microbe ; 28(4): 586-601.e6, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32841605

RESUMEN

The SARS-CoV-2 betacoronavirus uses its highly glycosylated trimeric Spike protein to bind to the cell surface receptor angiotensin converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatics analyses of natural variants and with existing 3D structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein both alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation. Taken together, these data can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.


Asunto(s)
Betacoronavirus/metabolismo , Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/virología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/enzimología , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , COVID-19 , Glicosilación , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Pandemias , Peptidil-Dipeptidasa A/química , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/química , Receptores Virales/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus
19.
bioRxiv ; 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32743578

RESUMEN

The current COVID-19 pandemic is caused by the SARS-CoV-2 betacoronavirus, which utilizes its highly glycosylated trimeric Spike protein to bind to the cell surface receptor ACE2 glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatic analyses of natural variants and with existing 3D-structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation that, taken together, can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.

20.
Science ; 369(6511): 1586-1592, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32694201

RESUMEN

Intervention strategies are urgently needed to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The trimeric viral spike (S) protein catalyzes fusion between viral and target cell membranes to initiate infection. Here, we report two cryo-electron microscopy structures derived from a preparation of the full-length S protein, representing its prefusion (2.9-angstrom resolution) and postfusion (3.0-angstrom resolution) conformations, respectively. The spontaneous transition to the postfusion state is independent of target cells. The prefusion trimer has three receptor-binding domains clamped down by a segment adjacent to the fusion peptide. The postfusion structure is strategically decorated by N-linked glycans, suggesting possible protective roles against host immune responses and harsh external conditions. These findings advance our understanding of SARS-CoV-2 entry and may guide the development of vaccines and therapeutics.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2 , Microscopía por Crioelectrón , Células HEK293 , Humanos , Peptidil-Dipeptidasa A/química , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Receptores Virales/química , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...