Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Cell Mol Life Sci ; 81(1): 209, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710967

RESUMEN

As an integral lysosomal transmembrane protein, transmembrane protein 106B (TMEM106B) regulates several aspects of lysosomal function and is associated with neurodegenerative diseases. The TMEM106B gene mutations lead to lysosomal dysfunction and accelerate the pathological progression of Neurodegenerative diseases. Yet, the precise mechanism of TMEM106B in Neurodegenerative diseases remains unclear. Recently, different research teams discovered that TMEM106B is an amyloid protein and the C-terminal domain of TMEM106B forms amyloid fibrils in various Neurodegenerative diseases and normally elderly individuals. In this review, we discussed the physiological functions of TMEM106B. We also included TMEM106B gene mutations that cause neurodegenerative diseases. Finally, we summarized the identification and cryo-electronic microscopic structure of TMEM106B fibrils, and discussed the promising therapeutic strategies aimed at TMEM106B fibrils and the future directions for TMEM106B research in neurodegenerative diseases.


Asunto(s)
Proteínas de la Membrana , Mutación , Proteínas del Tejido Nervioso , Enfermedades Neurodegenerativas , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/química , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/química , Animales , Lisosomas/metabolismo , Lisosomas/genética , Amiloide/metabolismo , Amiloide/genética , Amiloide/química
2.
J Mol Model ; 30(5): 124, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578379

RESUMEN

CONTEXT: The crystal and molecular structure, electronic properties, optical parameters, and elastic properties of a 1:2 hexanitrohexaazaisowurtzitane (CL-20)/2-mercapto-1-methylimidazole (MMI) cocrystal under 0 ~ 100 GPa hydrostatic pressure were calculated. The results show that the cocrystal CL-20/MMI undergoes three structural transitions at 72 GPa, 95 GPa, and 97 GPa, respectively, and the structural transition occurs in the part of the MMI compound. Structural mutations formed new bonds S1-S2, C2-C7, and N1C5 at 72GPa, 95 GPa, and 97 GPa, respectively. Similarly, the formation of new bonds is confirmed on the basis of an analysis of the changes in lattice constants, cell volumes, and partial densities of states (PDOS) for S1, S2, C2, C7, N1, and C3 at the corresponding pressures. The optical parameters show that the pressure makes the peaks of various optical parameters of CL-20/MMI larger, and the optical activity is enhanced. The optical parameters also confirm the structural mutation of CL-20/MMI under the corresponding pressure. METHOD: CL-20/MMI was calculated by using the first-principles norm-conservative pseudopotential based on density functional theory (DFT) in the CASTEP software package. For the optimization results, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is selected to optimize the geometry of the cocrystal in the range of 0-100 GPa. GGA/PBE (Perdew-Burke-Ernzerhof) was selected to relax the cocrystal CL-20/MMI fully without constraints at atmospheric pressure. The sampling scheme in the Brillouin zone [10] is the Monkhorst-Pack scheme, and the number of k-point grids was 2 × 2 × 2. By contrast, this study will use the LDA method to calculate.

3.
BMC Cardiovasc Disord ; 24(1): 216, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643093

RESUMEN

BACKGROUND: Acute kidney injury (AKI) in patients with acute myocardial infarction (AMI) often indicates a poor prognosis. OBJECTIVE: This study aimed to investigate the association between the TyG index and the risk of AKI in patients with AMI. METHODS: Data were taken from the Medical Information Mart for Intensive Care (MIMIC) database. A 1:3 propensity score (PS) was set to match patients in the AKI and non-AKI groups. Multivariate logistic regression analysis, restricted cubic spline (RCS) regression and subgroup analysis were performed to assess the association between TyG index and AKI. RESULTS: Totally, 1831 AMI patients were included, of which 302 (15.6%) had AKI. The TyG level was higher in AKI patients than in non-AKI patients (9.30 ± 0.71 mg/mL vs. 9.03 ± 0.73 mg/mL, P < 0.001). Compared to the lowest quartile of TyG levels, quartiles 3 or 4 had a higher risk of AKI, respectively (Odds Ratiomodel 4 = 2.139, 95% Confidence Interval: 1.382-3.310, for quartile 4 vs. quartile 1, Ptrend < 0.001). The risk of AKI increased by 34.4% when the TyG level increased by 1 S.D. (OR: 1.344, 95% CI: 1.150-1.570, P < 0.001). The TyG level was non-linearly associated with the risk of AKI in the population within a specified range. After 1:3 propensity score matching, the results were similar and the TyG level remained a risk factor for AKI in patients with AMI. CONCLUSION: High levels of TyG increase the risk of AKI in AMI patients. The TyG level is a predictor of AKI risk in AMI patients, and can be used for clinical management.


Asunto(s)
Lesión Renal Aguda , Infarto del Miocardio , Humanos , Puntaje de Propensión , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología , Glucosa , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico , Factores de Riesgo , Triglicéridos , Glucemia
4.
Int J Nanomedicine ; 19: 3295-3314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606373

RESUMEN

Background: Cardiac repair remains a thorny issue for survivors of acute myocardial infarction (AMI), due to the regenerative inertia of myocardial cells. Cell-free therapies, such as exosome transplantation, have become a potential strategy for myocardial injury. The aim of this study was to investigate the role of engineered exosomes in overexpressing Growth Differentiation Factor-15 (GDF-15) (GDF15-EVs) after myocardial injury, and their molecular mechanisms in cardiac repair. Methods: H9C2 cells were transfected with GDF-15 lentivirus or negative control. The exosomes secreted from H9C2 cells were collected and identified. The cellular apoptosis and autophagy of H2O2-injured H9C2 cells were assessed by Western blotting, TUNEL assay, electron microscopy, CCK-8 and caspase 3/7 assay. A rat model of AMI was constructed by ligating the left anterior descending artery. The anti-apoptotic, pro-angiogenic effects of GDF15-EVs treatment, as well as ensuing functional and histological recovery were evaluated. Then, mRNA sequencing was performed to identify the differentially expressed mRNAs after GDF15-EVs treatment. Results: GDF15-EVs inhibited apoptosis and promoted autophagy in H2O2 injured H9C2 cells. GDF15-EVs effectively decreased the infarct area and enhanced the cardiac function in rats with AMI. Moreover, GDF15-EVs hindered inflammatory cell infiltration, inhibited cell apoptosis, and promoted cardiac angiogenesis in rats with AMI. RNA sequence showed that telomerase reverse transcriptase (TERT) mRNA was upregulated in GDF15-EVs-treated H9C2 cells. AMPK signaling was activated after GDF15-EVs. Silencing TERT impaired the protective effects of GDF15-EVs on H2O2-injured H9C2 cells. Conclusion: GDF15-EVs could fulfil their protective effects against myocardial injury by upregulating the expression of TERT and activating the AMPK signaling pathway. GDF15-EVs might be exploited to design new therapies for AMI.


Asunto(s)
Exosomas , Factor 15 de Diferenciación de Crecimiento , Infarto del Miocardio , Animales , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Apoptosis , Exosomas/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Infarto del Miocardio/patología , Miocitos Cardíacos , ARN Mensajero/metabolismo
5.
Anal Bioanal Chem ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581533

RESUMEN

The excitation-dependent emission properties of carbon dots (Cdots) are extensively reported, but their red emission is often weak, limiting their wider application. Here we introduce ethidium bromide, as a functional precursor with red emission, to enhance the red emission for Cdots, with comparable intensity at a broad wavelength range to multi-emission Cdots (M-Cdots). We found that Cdots prepared with ethidium bromide/ethylenediamine exhibited strong blue and red emission at 440 and 615 nm, with optimal excitation at 360 and 470 nm as M-Cdots, respectively, but the Cdots from single ethidium bromide (EB-Cdots) possessed weak red emission. M-Cdots exhibited a broad absorption band at 478 nm, but a band blue-shifted to 425 nm was observed for EB-Cdots, while no absorption was observed at 478-425 nm for the Cdots prepared with citric acid and ethylenediamine. Thus, we proposed that C=O and C=N formed a π-conjugation structure as the absorption band at 478 nm for the red emission of M-Cdots, as also confirmed with the excitation at 470 nm. Moreover, the π-conjugation structure is fragile and sensitive to harsh conditions, so red emission was difficult to observe for the Cdots prepared with citric acid/ethylenediamine or single ethidium bromide. M-Cdots possess two centers for blue and red emission with different structures. The dual emission was therefore used for ratiometric sensing with dichromate (Cr2O72-) and formaldehyde (HCHO) as the targets using the intensity ratio of the emissions at 615 and 440 nm. Due to the comparable intensity at a broad wavelength range, we designed encryption codes with five excitations at 360, 400, 420, 450, and 470 nm as the inputs, and the emission colors were used for information decoding. Thus, we determined why red emission was difficult to realize for Cdots, and our results could motivate the design of red-emission Cdots for extensive applications.

6.
Clin Interv Aging ; 19: 503-515, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525316

RESUMEN

Objective: This study aimed to explore the association of preoperative neutrophil percentage (NEUT%) with the risk of acute kidney injury (AKI) in patients with acute myocardial infarction (AMI) having undergone coronary interventional therapy. Methods: A single-center, retrospective and observational study was conducted. From December 2012 to June 2021, patients with AMI were enrolled and divided into AKI group and non-AKI group. The NEUT% in the two groups was compared. The association between NEUT% with the risk of post-AMI AKI was analyzed by univariate and multivariable logistic regression. Kaplan-Meier survival curve was drawn to evaluate the prognostic ability of NEUT% for short-term all-cause death following AMI. Results: A total of 3001 consecutive patients were enrolled with an average age of 64.38 years. AKI occurred in 327 (10.9%) patients. The NEUT% was higher in the AKI group than in the non-AKI group ([76.65±11.43]% versus [73.22±11.83]%, P<0.001). NEUT% was also identified as an independent risk factor for AKI in AMI patients after adjustment (OR=1.021, 95% CI: 1.010-1.033, P < 0.001). Compared with those at the lowest quartile of NEUT%, the patients at quartiles 2-4 had a higher risk of AKI (P for trend = 0.003). The odds of AKI increased by 29.0% as NEUT% increased by 1 standard deviation (OR=1.290, 95% CI: 1.087-1.531, P = 0.004). After a median of 35 days follow-up, 93 patients died. Patients with a higher NEUT% presented a higher risk of all-cause death after AMI (Log rank: χ2 =24.753, P<0.001). Conclusion: In AMI patients, the peripheral blood NEUT% was positively associated with the odds of AKI and short-term all-cause mortality. NEUT% may provide physicians with more information about disease development and prognosis.


Asunto(s)
Lesión Renal Aguda , Infarto del Miocardio , Humanos , Anciano , Neutrófilos , Estudios Retrospectivos , Pronóstico , Infarto del Miocardio/complicaciones , Biomarcadores , Factores de Riesgo , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología
7.
J Fungi (Basel) ; 10(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38535187

RESUMEN

Temperature and moisture belong to the most important environmental factors affecting the growth and development of fungi. However, the effect of temperature on the mycelia of the edible Morchella mushrooms has not been determined. Here, a comprehensive analysis was performed to determine the influence of culture temperature on 13 strains of mycelia of three Morchella species (Morchella sextelata, Morchella septimelata, and Morchella importuna) at 5 °C, 10 °C, 15 °C, 20 °C, 25 °C, and 30 °C. The mycelial branching and growth rate data showed that 15-20 °C was a suitable temperature range for the mycelial growth of the 13 Morchella strains. RNA sequences revealed that a total of 2843, 2404, 1973, 1572, and 1866 differentially expressed genes (DEGs) were identified at 5 °C, 10 °C, 15 °C, 25 °C, and 30 °C compared with 20 °C. A Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis further indicated that the purine nucleotide and tyrosine metabolism pathways were crucial for mycelium development. Moreover, the enrichment of autophagy of mitochondria, regulation of cell morphogenesis, and piecemeal microautophagy of the nuclei at 25 °C (vs. 20 °C) indicated the damage caused by heat stress in Morchella mycelia. Notably, a total of four unique module eigengenes (MEs) were identified through a weighted gene coexpression network analysis (WGCNA). Among them, 2293 genes in the turquoise module were significantly positively correlated with temperature (r = 0.946, p < 0.001), whereas 739 genes in the blue module were significantly negatively correlated with temperature (r = -0.896, p < 0.001), suggesting that the effect of high temperatures on mycelial genes was significantly greater than that of low temperatures. Moreover, the coexpression network indicated that high culture temperatures accelerated the oxidative stress response and energy metabolism in mycelia, while upregulation of purine nucleotide catabolism and ribosomal protein-related genes were improved by low-temperature tolerance. In addition, the upregulated expression of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and heat shock protein (HSP) genes in mycelia was associated with reactive oxygen species (ROS)-mediated damage at high temperatures. Overall, this study provides an important theoretical basis and application value for optimizing Morchella cultivation techniques.

8.
ChemSusChem ; : e202400211, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38547358

RESUMEN

The reductive amination of 1,6-hexanediol with ammonia is one of the most promising green routes for synthesis of 1,6-hexanediamine. Herein, we developed a phosphorous modified Ni catalyst of Ni-P/Al2O3. It presented satisfactory improved selectivity to 1,6-hexanediamine in the reductive amination of 1,6-hexanediol compared to the Ni/Al2O3 catalyst. The phosphorous tended to interact with Al2O3 to form AlPOx species, induced Ni nanoparticle to be flatter, and the decrease of strong acid sites, the new-formed Ni-AlPOx-Al2O3 interface and the flatter Ni nanoparticle were the key to switch the dominating product from hexamethyleneimine to 1,6-hexanediamine. This work develops an efficient catalyst for production of 1,6-hexanediamine from the reductive amination of 1,6-hexanediol, and provides a point of view about designing selective non-noble metal catalysts for producing primary diamines via reductive amination of diols.

9.
Nat Aging ; 4(4): 568-583, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38491289

RESUMEN

Hearing loss is associated with an increased risk of Alzheimer disease (AD). However, the mechanisms of hearing loss promoting the onset of AD are poorly understood. Here we show that hearing loss aggravates cognitive impairment in both wild-type mice and mouse models of AD. Embryonic growth/differentiation factor 1 (GDF1) is downregulated in the hippocampus of deaf mice. Knockdown of GDF1 mimics the detrimental effect of hearing loss on cognition, while overexpression of GDF1 in the hippocampus attenuates the cognitive impairment induced by deafness. Strikingly, overexpression of GDF1 also attenuates cognitive impairment in APP/PS1 transgenic mice. GDF1 activates Akt, which phosphorylates asparagine endopeptidase and inhibits asparagine endopeptidase-induced synaptic degeneration and amyloid-ß production. The expression of GDF1 is downregulated by the transcription factor CCAAT-enhancer binding protein-ß. These findings indicate that hearing loss could promote AD pathological changes by inhibiting the GDF1 signaling pathway; thus, GDF1 may represent a therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Pérdida Auditiva , Animales , Ratones , Enfermedad de Alzheimer/complicaciones , Disfunción Cognitiva/etiología , Factor 1 de Diferenciación de Crecimiento/metabolismo , Pérdida Auditiva/genética , Ratones Transgénicos
10.
Front Microbiol ; 15: 1345231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426066

RESUMEN

Introduction: The artificial cultivation of morels has been a global research focus owing to production variability. Understanding the microbial ecology in cultivated soil is essential to increase morel yield and alleviate pathogen harm. Methods: A total of nine Morchella cultivation experiments in four soil field types, forest, paddy, greenhouse, and orchard in Shanghai city were performed to determine the potential ecological relationship between Morchella growth and soil microbial ecology. Results: Generally, significant variation was observed in the soil microbial diversity and composition between the different experimental field types. The niche width analysis indicated that the bacterial habitat niche breadth was significantly greater than the fungal community width, which was further confirmed by a null model that revealed that homogeneous selection could explain 46.26 and 53.64% of the variance in the bacterial and fungal assemblies, respectively. Moreover, the neutral community model revealed that stochastic processes dominate the bacterial community in forests and paddies and both the bacterial and fungal communities in orchard crops, whereas deterministic processes mostly govern the fungal community in forests and paddies and both the bacterial and the fungal communities in greenhouses. Furthermore, co-occurrence patterns were constructed, and the results demonstrated that the dynamics of the soil microbial community are related to fluctuations in soil physicochemical characteristics, especially soil potassium. Importantly, structural equation modeling further demonstrated that the experimental soil type significantly affects the potassium content of the soil, which can directly or indirectly promote Morchella yield by inhibiting soil fungal richness. Discussion: This was the first study to predict morel yield through soil potassium fertilizer and soil fungal community richness, which provides new insights into deciphering the importance of microbial ecology in morel agroecosystems.

11.
Eur J Clin Pharmacol ; 80(4): 613-620, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38319348

RESUMEN

OBJECTIVE: Sodium-glucose cotransporter 2 (SGLT2) inhibitors have well-documented effects in reducing hospitalization or cardiovascular mortality, while the association of SGLT2 inhibitor dapagliflozin (DAPA) and the risk of acute kidney injury (AKI) in acute myocardial infarction (AMI) patients has not been comprehensively investigated. Therefore, we aimed to assess the association between DAPA and AKI risk in AMI patients after percutaneous coronary intervention (PCI) therapy. METHODS: Using the Changzhou Acute Myocardial Infarction Registry database, we retrospectively included AMI patients from January 2017 to August 2021 and analyzed the risk of AKI and all-cause mortality after PCI therapy. The patients were divided into two groups according to the use of DAPA (DAPA group and Ctrl group). Patients in the DAPA group started to use DAPA after admission and continued its use during hospitalization and follow-up period. Baseline characteristics were balanced between the two groups with a propensity score matching (PSM) analysis. The outcome was AKI within 7 days after PCI and all-cause mortality during a follow-up of 2 years. Univariate and multivariate logistic regression analyses were used to assess the association between DAPA and AKI risk. RESULTS: A total of 1839 AMI patients undergoing PCI were enrolled. DAPA was used in 278 (15.1%) patients. Postoperative AKI occurred in 351 (19.1%) cases. A 1:1 PSM analysis was used to reduce confounding factors. The multivariate stepwise regression analysis showed that DAPA (odds ratio, OR 0.66; 95% confidence interval, CI 0.44-0.97; P = 0.036) was an independent protective factor in the entire cohort. After matching, the use of DAPA in AMI patients was independently associated with a decline of AKI risk (OR 0.32; 95% CI, 0.19-0.53; P < 0.001) after hospital admission. Meanwhile, there were significant differences in mortality between the DAPA group and Ctrl group (2.5% vs. 7.6%, P = 0.012). CONCLUSION: SGLT2 inhibitor DAPA was associated with lower risks of incident AKI and all-cause mortality in AMI patients after PCI therapy.


Asunto(s)
Lesión Renal Aguda , Compuestos de Bencidrilo , Glucósidos , Infarto del Miocardio , Intervención Coronaria Percutánea , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Intervención Coronaria Percutánea/efectos adversos , Estudios Retrospectivos , Factores de Riesgo
12.
Biomed Pharmacother ; 172: 116224, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308970

RESUMEN

OBJECTIVE: Extracellular vesicles (EVs) have garnered considerable attention among researchers as candidates for natural drug delivery systems. This study aimed to investigate whether extracellular vesicle mediated targeting delivery of growth differentiation factor-15 (GDF15) improves myocardial repair by reprogramming macrophages post myocardial injury. METHODS: EVs were isolated from macrophages transfected with GDF15 (EXO-GDF15) and control macrophages (EXO-NC). In vitro and vivo experiments, we compared their reprogram ability of macrophages and regeneration activity. Furthermore, proteomic analysis were employed to determine the specific mechanism by which GDF15 repairs the myocardium. RESULTS: Compared with EXO-NC, EXO-GDF15 significantly regulated macrophage phenotypic shift, inhibited cardiomyocyte apoptosis, and enhanced endothelial cell angiogenesis. Moreover, EXO-GDF15 also significantly regulated macrophage heterogeneity and inflammatory cytokines, reduced fibrotic area, and enhanced cardiac function in infarcted rats. Proteomic analysis revealed a decrease in fatty acid-binding protein 4 (FABP4) protein expression following treatment with EXO-GDF15. Mechanistically, the reprogramming of macrophages by EXO-GDF15 is accomplished through the activation of Smad2/3 phosphorylation, which subsequently inhibits the production of FABP4. CONCLUSIONS: Extracellular vesicle mediated targeting delivery of growth differentiation factor-15 improves myocardial repair by reprogramming macrophages post myocardial injury via down-regulating the expression of FABP4. EXO-GDF15 may serve as a promising approach of immunotherapy.


Asunto(s)
Exosomas , Vesículas Extracelulares , Lesiones Cardíacas , Infarto del Miocardio , Ratas , Animales , Infarto del Miocardio/metabolismo , Proteómica , Exosomas/metabolismo , Miocardio/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Lesiones Cardíacas/metabolismo
13.
J Mol Model ; 30(3): 83, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38403784

RESUMEN

CONTEXT: The influence of external electric fields (EEFs) on chemical substances has always been a hot topic in the field of theoretical chemistry research. 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) is an energetic material with excellent comprehensive properties and enormous potential for application. This article explores the molecular structure, electronic structure, energy change, frontier molecular orbitals (FMOs) and density of states (DOS), UV-Vis spectra, and infrared spectra of LLM-105 under various electric field conditions. The results indicate that negative EEF can improve the stability of LLM-105, reflected in the initiation of changes in bond length and HOMO-LOMO gap. EEF has a significant impact on the electronic structure of LLM-105. The polarization of the electronic structure brings about a change in total energy, which is reflected in the analysis of energy changes. In addition, the external electric field will cause the frequency of the infrared spectra and the UV-Vis spectra to have different degrees of blue shift. The results of the analysis are helpful to understand the changes of energetic materials under the applied electric field. METHODS: Based on the density functional theory (DFT), the structural optimization and energy calculation were carried out by using B3LYP/6-311G(d, p) and B3LYP/def2-TZVPP methods, respectively. After optimization convergence, vibration analysis was performed without imaginary frequencies to obtain stable configurations. Then, the molecular structure, electronic structure, energy changes, molecular orbital and density of states, UV-Vis spectra, and infrared spectra were analyzed.

14.
Adv Healthc Mater ; : e2400047, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38364079

RESUMEN

The presence of multidrug-resistant bacteria has challenged the clinical treatment of bacterial infection. There is a real need for the development of novel biocompatible materials with broad-spectrum antimicrobial activities. Antimicrobial hydrogels show great potential in infected wound healing but are still being challenged. Herein, broad-spectrum antibacterial and mechanically tunable amyloid-based hydrogels based on self-assembly and local mineralization of silver nanoparticles are reported. The mineralized hydrogels are biocompatible and have the advantages of sustained release of silver, prolonged antimicrobial effect, and improved adhesion capacity. Moreover, the mineralized hydrogels display a significant antimicrobial effect against both Gram-positive and Gram-negative bacteria in cells and mice by inducing membrane damage and reactive oxygen species toxicity in bacteria. In addition, the mineralized hydrogels can rapidly accelerate wound healing by the synergy between their antibacterial activity and intrinsic improvement for cell proliferation and migration. This study provides a modular approach to developing a multifunctional protein hydrogel platform based on biomolecule-coordinated self-assembly for a wide range of biomedical applications.

15.
Aging Cell ; : e14124, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380563

RESUMEN

DJ-1, also known as Parkinson's disease protein 7 (Park7), is a multifunctional protein that regulates oxidative stress and mitochondrial function. Dysfunction of DJ-1 is implicated in the pathogenesis of Parkinson's disease (PD). Hyperhomocysteinemia is associated with an increased risk of PD. Here we show that homocysteine thiolactone (HTL), a reactive thioester of homocysteine (Hcy), covalently modifies DJ-1 on the lysine 182 (K182) residue in an age-dependent manner. The N-homocysteinylation (N-hcy) of DJ-1 abolishes its neuroprotective effect against oxidative stress and mitochondrial dysfunction, exacerbating cell toxicity. Blocking the N-hcy of DJ-1 restores its protective effect. These results indicate that the N-hcy of DJ-1 abolishes its neuroprotective effect and promotes the progression of PD. Inhibiting the N-hcy of DJ-1 may exert neuroprotective effect against PD.

16.
Br J Cancer ; 130(4): 526-541, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38182686

RESUMEN

BACKGROUND: Imatinib has become an exceptionally effective targeted drug for treating gastrointestinal stromal tumors (GISTs). Despite its efficacy, the resistance to imatinib is common in GIST patients, posing a significant challenge to the effective treatment. METHODS: The expression profiling of TRIM21, USP15, and ACSL4 in GIST patients was evaluated using Western blot and immunohistochemistry. To silence gene expression, shRNA was utilized. Biological function of TRIM21, USP15, and ACSL4 was examined through various methods, including resistance index calculation, colony formation, shRNA interference, and xenograft mouse model. The molecular mechanism of TRIM21 and USP15 in GIST was determined by conducting Western blot, co-immunoprecipitation, and quantitative real-time PCR (qPCR) analyses. RESULTS: Here we demonstrated that downregulation of ACSL4 is associated with imatinib (IM) resistance in GIST. Moreover, clinical data showed that higher levels of ACSL4 expression are positively correlated with favorable clinical outcomes. Mechanistic investigations further indicated that the reduced expression of ACSL4 in GIST is attributed to excessive protein degradation mediated by the E3 ligase TRIM21 and the deubiquitinase USP15. CONCLUSION: These findings demonstrate that the TRIM21 and USP15 control ACSL4 stability to maintain the IM sensitive/resistant status of GIST.


Asunto(s)
Antineoplásicos , Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Humanos , Animales , Ratones , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Resistencia a Antineoplásicos/genética , ARN Interferente Pequeño/farmacología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Línea Celular Tumoral , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , Proteasas Ubiquitina-Específicas/farmacología
17.
Clin Microbiol Infect ; 30(4): 507-514, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38295990

RESUMEN

OBJECTIVES: To study the clinical relevance, mechanisms, and evolution of polymyxin B (POLB) heteroresistance (PHR) in carbapenem-resistant Klebsiella pneumoniae (CRKP), potentially leading to a significant rise in POLB full resistant (FR) CRKP. METHODS: Total of 544 CRKP isolates from 154 patients treated with POLB were categorized into PHR and POLB non-heteroresistance (NHR) groups. We performed statistical analysis to compare clinical implications and treatment responses. We employed whole-genome sequencing, bioinformatics, and PCR to study the molecular epidemiology, mechanisms behind PHR, and its evolution into FR. RESULTS: We observed a considerable proportion (118 of 154, 76.62%) of clinically undetected PHR strains before POLB exposure, with a significant subset of them (33 of 118, 27.97%) evolving into FR after POLB treatment. We investigated the clinical implications, epidemiological characteristics, mechanisms, and evolutionary patterns of PHR strains in the context of POLB treatment. About 92.86% (39 of 42) of patients had PHR isolates before FR, highlighting the clinical importance of PHR. the ST15 exhibited a notably lower PHR rate (1 of 8, 12.5% vs. 117 of 144, 81.25%; p < 0.01). The ST11 PHR strains showing significantly higher rate of mgrB mutations by endogenous insertion sequences in their resistant subpopulation (RS) compared with other STs (78 of 106, 73.58% vs. 4 of 12, 33.33%; p < 0.01). The mgrB insertional inactivation rate was lower in FR isolates than in the RS of PHR isolates (15 of 42, 35.71% vs. 84 of 112, 75%; p < 0.01), whereas the pmrAB mutation rate was higher in FR isolates than in the RS of PHR isolates (8 of 42, 19.05% vs. 2 of 112, 1.79%; p < 0.01). The evolution from PHR to FR was influenced by subpopulation dynamics and genetic adaptability because of hypermutability. DISCUSSION: We highlight significant genetic changes as the primary driver of PHR to FR in CRKP, underscoring polymyxin complexity.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Humanos , Polimixinas , Polimixina B/farmacología , Relevancia Clínica , Klebsiella pneumoniae/genética , Estudios Retrospectivos , Genómica , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Carbapenémicos/farmacología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/epidemiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
18.
Int J Biol Macromol ; 260(Pt 1): 129447, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232889

RESUMEN

The phase separation behavior of mixed solution of caseinate (Cas) and alginate (Alg) was investigated. Lactobacillus plantarum FZU3013 was encapsulated using 4 % Cas/1 % Alg gel beads with a phase-separated structure. The bacteria were predominantly distributed in the Alg-rich continuous phase. The use of 4 % Cas/1 % Alg beads resulted in higher encapsulation efficiency for L. plantarum FZU3013 compared to 1 % Alg beads. After 5 weeks of storage at 4 °C, the viable count in 4 % Cas/1 % Alg beads was 8.3 log CFU/g, which was 1.1 log CFU/g higher than that of the 1 % Alg beads. When 1 % Alg beads of the smallest size were subjected to in vitro digestion, no viable bacteria could be detected at the end of the digestion, whereas the 4 % Cas/1 % Alg beads of the smallest size had a viable count of 3.9 log CFU/g. When the size of the 4 % Cas/1 % Alg beads was increased to 1000 µm, the viable count was 7.0 log CFU/g after digestion. The results of infrared spectroscopy and zeta potential indicated that hydrogen bonding and electrostatic interactions between caseinate and alginate reinforced the structure of the gel beads and improved the protection for L. plantarum FZU 3013.


Asunto(s)
Lactobacillus plantarum , Probióticos , Alginatos/química
19.
Open Med (Wars) ; 19(1): 20230880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38283583

RESUMEN

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a hereditary heart disease characterized by bidirectional or polymorphic ventricular tachycardia and an increased risk of sudden cardiac death. Although trans-2,3-enoyl-CoA reductase like (TECRL) is a newly reported pathogenic gene leading to CPVT that can influence intracellular calcium regulation, the unidentified mechanism underlying the pathogenesis of TECRL deficiency-mediated CPVT remains mainly elusive. In the present study, Tecrl knockout (KO) mice were established and the differentially expressed genes (DEGs) were investigated by RNA-sequencing from the heart tissues. In addition, 857 DEGs were identified in Tecrl KO mice. Subsequently, a weighted gene co-expression network analysis was conducted to discern the pivotal pathways implicated in the Tecrl-mediated regulatory network. Moreover, pathway mapping analyses demonstrated that essential metabolism-related pathways were significantly enriched, notably the fatty acid metabolic process and calcium regulation. Collectively, the data suggested a synergistic relationship between Tecrl deficiency and cardiometabolic and calcium regulation during the development of CPVT. Therefore, further studies on the potential function of TECRL in cardiac tissues would be beneficial to elucidate the pathogenesis of CPVT.

20.
BMC Cardiovasc Disord ; 24(1): 16, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172656

RESUMEN

BACKGROUND: The purpose of this study was to develop a Nomogram model to identify the risk of all-cause mortality during hospitalization in patients with heart failure (HF). METHODS: HF patients who had been registered in the Medical Information Mart for Intensive Care (MIMIC) III and IV databases were included. The primary outcome was the occurrence of all-cause mortality during hospitalization. Two Logistic Regression models (LR1 and LR2) were developed to predict in-hospital death for HF patients from the MIMIC-IV database. The MIMIC-III database were used for model validation. The area under the receiver operating characteristic curve (AUC) was used to compare the discrimination of each model. Calibration curve was used to assess the fit of each developed models. Decision curve analysis (DCA) was used to estimate the net benefit of the predictive model. RESULTS: A total of 16,908 HF patients were finally enrolled through screening, of whom 2,283 (13.5%) presented with in-hospital death. Totally, 48 variables were included and analyzed in the univariate and multifactorial regression analysis. The AUCs for the LR1 and LR2 models in the test cohort were 0.751 (95% CI: 0.735∼0.767) and 0.766 (95% CI: 0.751-0.781), respectively. Both LR models performed well in the calibration curve and DCA process. Nomogram and online risk assessment system were used as visualization of predictive models. CONCLUSION: A new risk prediction tool and an online risk assessment system were developed to predict mortality in HF patients, which performed well and might be used to guide clinical practice.


Asunto(s)
Insuficiencia Cardíaca , Nomogramas , Humanos , Mortalidad Hospitalaria , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/terapia , Área Bajo la Curva , Cuidados Críticos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...