Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(48): 55870-55876, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38010202

RESUMEN

Catalytically inactive Zn2+ is incorporated into cobalt hydroxide to synthesize hierarchical ZnCo-layered double hydroxide nanosheet networks supported on carbon fiber (ZnCo-LDH/CF). The incorporation of Zn2+ is revealed to endow ZnCo-LDH/CF with significantly superior performance in the aspects of the activity and selectivity for methanol electrooxidation to formic acid and the boosting effect for cathodic hydrogen production compared with the counterpart without Zn2+. Density functional theory (DFT) calculation reveals that the incorporation of nonactive Zn2+ can increase the density of states near the Fermi level of LDH (i.e., elevate electrical conductivity to form favorable charge transportation during electrocatalysis) and promote the adsorption and subsequent cleavage of methanol, thus leading to the enhanced methanol electrooxidation performance.

2.
Small ; 19(27): e2208027, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36965029

RESUMEN

An electrocatalytic methanol oxidation reaction (MOR) is proposed to replace oxygen evolution reaction (OER) in water electrolysis owing to the favorable thermodynamics of MOR than OER. However, there is still a competition between the MOR and the OER when the applied potential is in the conventional OER zone. How to inhibit OER while maintaining efficient MOR is an open and challenging question, and there are few reports focusing on this thus far. Herein, by taking NiFe layered double hydroxide (LDH) as a model catalyst due to its intrinsically high catalytic activity for the OER, the perspective of inhibiting OER is shown and thus promoting MOR through a heterogenous engineering of NiFe-LDH. The engineered heterostructure comprising NiFe-LDH and in situ formed NiFe-hexylaminobenzene (NiFe-HAB) coordination polymer exhibits outstanding electrocatalytic capability for methanol oxidation to formic acid (e.g., the Faradaic efficiencies (FEs) of formate product are close to 100% at various current densities, all of which are much larger than those (53-65%) on unmodified NiFe-LDH). Mechanism studies unlock the modification of NiFe-HAB passivates the OER activity of NiFe-LDH through tailoring the free energies for element reaction steps of the OER and increasing the free energy of the rate-determining step, consequently leading to efficient MOR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...