Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Water Sci Technol ; 90(1): 303-313, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007321

RESUMEN

The composition of waste-activated sludge (WAS) is complex, containing a large amount of harmful substances, which pose a threat to the environment and human health. The reduction and resource utilization of sludge has become a development demand in sludge treatment and disposal. Based on the technical bottlenecks in the practical application of direct anaerobic digestion technology, this study adopted two different thermal and thermal-alkali hydrolysis technologies to pretreat sludge. A pilot-scale experiment was conducted to investigate the experimental conditions, parameters, and effects of two hydrolysis technologies. This study showed that the optimal hydrolysis temperature was 70 °C, the hydrolysis effect and pH can reach equilibrium with the hydrolysis retention time was 4-8 h, and the optimal alkali concentration range was 0.0125-0.015 kg NaOH/kg dry-sludge. Thermal-alkali combination treatment greatly improved the performance of methane production, the addition of NaOH increased methane yield by 31.2% than that of 70 °C thermal hydrolysis. The average energy consumption is 75 kWh/m3 80% water-content sludge during the experiment. This study provides a better pretreatment strategy for exploring efficient anaerobic digestion treatment technologies suitable for southern characteristic sewage sludge.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/química , Anaerobiosis , Proyectos Piloto , Hidrólisis , Eliminación de Residuos Líquidos/métodos , Álcalis/química , Calor , Metano/metabolismo , Reactores Biológicos , Hidróxido de Sodio/química , Concentración de Iones de Hidrógeno
2.
Chemosphere ; 302: 134841, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35525448

RESUMEN

Lysozyme hydrolysis can accelerate waste-activated sludge (WAS) solubilisation, which can significantly shorten the process and promote the efficiency of anaerobic digestion. This study investigated the impact of divalent cations on lysozyme-induced solubilisation of WAS. The performance of lysozyme pretreatment was dramatically inhibited by Mg2+ and Ca2+. Compared to the control group, the amount of net SCOD, protein, and polysaccharides released to the supernatant were reduced by 36.6%, 44.7%, and 35.8%, respectively, in the presence of divalent cations. The extracellular polymeric substance (EPS) matrix became tightly bound, resulting in fewer proteins and polysaccharides being extracted from loosely-bound EPS (LB-EPS) with divalent cations, which was detrimental to the solubilisation of WAS. Divalent cations decreased the surface electronegativity of sludge particles and prolonged the adsorption of lysozymes by sludge flocs. More than 16.6% of total lysozymes remained in the liquid phase of WAS after 240 min Mg2+ and Ca2+ strengthened the binding among proteins and polysaccharides and promoted the intermolecular cross-linking of polysaccharides. The EPS matrix formed a dense spatial reticular structure that blocked the transfer of lysozymes from the EPS matrix to the pellet. As a result, the lysozymes accumulated in LB-EPS rather than hydrolysing the microorganism's cell wall. This study provides a new perspective on the restriction of WAS pretreatment with lysozymes and optimises the method of lysozyme-induced solubilisation of WAS.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Cationes Bivalentes/análisis , Matriz Extracelular de Sustancias Poliméricas/química , Muramidasa , Polisacáridos/análisis , Proteínas/análisis , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos
3.
Bioresour Technol ; 351: 127006, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35304256

RESUMEN

This study introduced the excellent improvement of enzyme cocktail (lysozyme and protease) on hydrolysis efficiency and the role of reducing carbon emission as an alternative carbon source. The best dosing method after optimization was to add four parts of lysozyme at 0 h and one part of protease at 1 h. The extracellular proteins and polysaccharides increased by 118% and 64% respectively under the optimal dosing mode. Enzyme cocktails reduced more organic matters and extended the distribution of sludge particles in the small particle size part. The enzymatic-treated sludge could reduce 21.09 kg CO2/t VSS if utilized to replace methanol for denitrification carbon source. Enzyme cocktails did better in enhancing both solubilization and hydrolysis than single enzymes under the optimal method. This study will provide a more integrated and comprehensive system for enzymatic pretreatment and new insight into the enzymatic pretreatment enhancing hydrolysis and reducing carbon emission.


Asunto(s)
Carbono , Aguas del Alcantarillado , Hidrólisis , Muramidasa/metabolismo , Péptido Hidrolasas/metabolismo , Eliminación de Residuos Líquidos/métodos
4.
Bioresour Technol ; 337: 125452, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34186332

RESUMEN

This first-attempt study illustrated the microbial cooperative interactions related to bioelectricity generation from the mixture of sludge fermentation liquid (SFL) and fruit waste extracts (FWEs) via microbial fuel cells (MFCs). The optimal output voltages of 0.65 V for SFL-MFCs, 0.51 V for FWEs-MFCs and 0.75 V for mixture-MFCs associated with bioelectricity conversion efficiencies of 1.061, 0.718 and 1.391 kWh/kg COD were reached, respectively. FWEs addition for substrates C/N ratio optimization contributed considerably to increase SFL-fed MFCs performance via triggering a higher microbial diversity, larger relatively abundance of functional genes and microbial synergistic interactions with genera enrichment of Clostridium, Alicycliphilus, Thermomonas, Geobacter, Paludibaculum, Pseudomonas, Taibaiella and Comamonas. Furthermore, a conceptual illustration of co-locating scenario of wastewater treatment plant(s), waste sludge in situ acidogenic fermentation, fruit waste collection/crushing station and MFC plant was proposed for the first time, which provided new thinking for future waste sludge treatment toward maximizing solid reduction and power recovery.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electricidad , Electrodos , Fermentación , Frutas , Extractos Vegetales , Aguas del Alcantarillado , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA