Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Chin Med Sci J ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755752

RESUMEN

Objective To investigate the efficacy of raw corn starch (RCS) in clinical management of insulinoma-induced hypoglycemia.Methods We retrospectively collected clinical data of insulinoma patients who received RCS-supplemented diet preoperatively, and analyzed the therapeutic effects of the RCS intervention on blood glucose control, weight change, and its adverse events.Results The study population consisted of 24 case of insulinoma patients, 7 males and 17 females, aged 46.08 ± 14.15 years. Before RCS-supplemented diet, all patients had frequent hypoglycemic episodes (2.51 ± 3.88 times/week), concurrent with neuroglycopenia (in 83.3% of patients) and autonomic manifestations (in 75.0% of patients), with the median fasting blood glucose (FBG) of 2.70 [interquartile range (IQR): 2.50-2.90] mmol/L. The patients' weight increased by 0.38 (IQR: 0.05-0.65) kg per month, with 8 (33.3%) cases developing overweight and 7 (29.2%) cases developing obesity. All patients maintained the RCS-supplemented diet until they underwent tumor resection (23 cases) and transarterial chemoembolization for liver metastases (1 case). For 19 patients receiving RCS throughout the day, the median FBG within one week of nutritional management was 4.30 (IQR: 3.30-5.70) mmol/L, which was a significant increase compared to pre-nutritional level [2.25 (IQR: 1.60-2.90) mmol/L; P = 0.000]. Of them, 10 patients receiving RCS throughout the day for over four weeks had sustained improvement in FBG compared to pre-treatment [3.20 (IQR: 2.60-3.95) mmol/L vs. 2.15 (IQR: 1.83-2.33) mmol/L; P = 0.000). Five patients who received RCS only at night also had a significant increase in FBG within one week of nutritional management [3.50 (IQR: 2.50-3.65) mmol/L vs. 2.20 (IQR:1.80-2.60) mmol/L; P = 0.000], but only one patient who continued to receive RCS for over 4 weeks did not have a significant improvement in FBG. No improvement in weight gain was observed upon RCS supplementation. Mild diarrhea (2 cases) and flatulence (1 case) occurred, and were relieved by reduction of RCS dose.Conclusion The RCS-supplemented diet is effective in controlling insulinoma-induced hypoglycemia.

2.
Environ Sci Technol ; 58(19): 8182-8193, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691136

RESUMEN

As an alternative plasticizer to conventional phthalates, di(2-ethylhexyl) terephthalate (DEHTP) has attracted considerable concerns, given its widespread detection in the environment and humans. However, the potential toxicity, especially liver toxicity, posed by DEHTP remains unclear. In this study, based on the 2017-2018 National Health and Nutrition Examination Survey, two metabolites of DEHTP, i.e., mono(2-ethyl-5-hydroxyhexyl) terephthalate (MEHHTP) and mono(2-ethyl-5-carboxypentyl) terephthalate (MECPTP), were found to be present in the urine samples of nearly all representative U.S. adults. Moreover, a positive linear correlation was observed between the concentrations of the two metabolites and the risk of nonalcoholic fatty liver disease (NAFLD) in the population. Results of weighted quantile sum and Bayesian kernel machine regression indicated that MEHHTP contributed a greater weight to the risk of NAFLD in comparison with 12 conventional phthalate metabolites. In vitro experiments with hepatocyte HepG2 revealed that MEHHTP exposure could increase lipogenic gene programs, thereby promoting a dose-dependent hepatic lipid accumulation. Activation of liver X receptor α may be an important regulator of MEHHTP-induced hepatic lipid disorders. These findings provide new insights into the liver lipid metabolism toxicity potential of DEHTP exposure in the population.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ácidos Ftálicos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Humanos , Ácidos Ftálicos/toxicidad , Ácidos Ftálicos/metabolismo , Masculino , Adulto , Femenino
3.
Aging Med (Milton) ; 7(1): 5-51, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38571669

RESUMEN

With the deepening of aging in China, the prevalence of diabetes in older people has increased noticeably, and standardized diabetes management is critical for improving clinical outcomes of diabetes in older people. In 2021, the National Center of Gerontology, Chinese Society of Geriatrics, and Diabetes Professional Committee of Chinese Aging Well Association organized experts to write the first guideline for diabetes diagnosis and treatment in older people in China, the Guideline for the Management of Diabetes Mellitus in the Elderly in China (2021 Edition). The guideline emphasizes that older patients with diabetes are a highly heterogeneous group requiring comprehensive assessment and stratified and individualized management strategies. The guideline proposes simple treatments and de-intensified treatment strategies for older patients with diabetes. This edition of the guideline provides clinicians with practical and operable clinical guidance, thus greatly contributing to the comprehensive and full-cycle standardized management of older patients with diabetes in China and promoting the extensive development of clinical and basic research on diabetes in older people and related fields. In the past 3 years, evidence-based medicine for older patients with diabetes and related fields has further advanced, and new treatment concepts, drugs, and technologies have been developed. The guideline editorial committee promptly updated the first edition of the guideline and compiled the Guideline for the Management of Diabetes Mellitus in the Elderly in China (2024 Edition). More precise management paths for older patients with diabetes are proposed, for achieving continued standardization of the management of older Chinese patients with diabetes and improving their clinical outcomes.

4.
EBioMedicine ; 101: 105008, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38368766

RESUMEN

Gestational diabetes mellitus (GDM) is one of the most common metabolic complications during pregnancy, threatening both maternal and fetal health. Prediction and diagnosis of GDM is not unified. Finding effective biomarkers for GDM is particularly important for achieving early prediction, accurate diagnosis and timely intervention. Urine, due to its accessibility in large quantities, noninvasive collection and easy preparation, has become a good sample for biomarker identification. In recent years, a number of studies using metabolomics and proteomics approaches have identified differential expressed urine metabolites and proteins in GDM patients. In this review, we summarized these potential urine biomarkers for GDM prediction and diagnosis and elucidated their role in development of GDM.


Asunto(s)
Diabetes Gestacional , Embarazo , Femenino , Humanos , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/metabolismo , Proteómica , Metabolómica , Biomarcadores/metabolismo
5.
Cancer Res ; 84(6): 905-918, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38231480

RESUMEN

FLT3 internal tandem duplication (FLT3-ITD) mutations are one of the most prevalent somatic alterations associated with poor prognosis in patients with acute myeloid leukemia (AML). The clinically approved FLT3 kinase inhibitors gilteritinib and quizartinib improve the survival of patients with AML with FLT3-ITD mutations, but their long-term efficacy is limited by acquisition of secondary drug-resistant mutations. In this study, we conducted virtual screening of a library of 60,411 small molecules and identified foretinib as a potent FLT3 inhibitor. An integrated analysis of the BeatAML database showed that foretinib had a lower IC50 value than other existing FLT3 inhibitors in patients with FLT3-ITD AML. Foretinib directly bound to FLT3 and effectively inhibited FLT3 signaling. Foretinib potently inhibited proliferation and promoted apoptosis in human AML cell lines and primary AML cells with FLT3-ITD mutations. Foretinib also significantly extended the survival of mice bearing cell-derived and patient-derived FLT3-ITD xenografts, exhibiting stronger efficacy than clinically approved FLT3 inhibitors in treating FLT3-ITD AML. Moreover, foretinib showed potent activity against secondary mutations of FLT3-ITD that confer resistance to quizartinib and gilteritinib. These findings support the potential of foretinib for treating patients with AML with FLT3-ITD mutations, especially for those carrying secondary mutations after treatment failure with other FLT3 inhibitors. SIGNIFICANCE: Foretinib exhibits superior efficacy to approved drugs in AML with FLT3-ITD mutations and retains activity in AML with secondary FLT3 mutations that mediate resistance to clinical FLT3 inhibitors.


Asunto(s)
Anilidas , Compuestos de Anilina , Benzotiazoles , Leucemia Mieloide Aguda , Compuestos de Fenilurea , Inhibidores de Proteínas Quinasas , Pirazinas , Quinolinas , Humanos , Ratones , Animales , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Tirosina Quinasa 3 Similar a fms/genética
6.
Curr Mol Med ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38289639

RESUMEN

Obesity dramatically increases the risk of type 2 diabetes, fatty liver, hypertension, cardiovascular disease, and cancer, causing both declines in quality of life and life expectancy, which is a serious worldwide epidemic. At present, more and more patients with obesity are choosing drug therapy. However, given the high failure rate, high cost, and long design and testing process for discovering and developing new anti-obesity drugs, drug repurposing could be an innovative method and opportunity to broaden and improve pharmacological tools in this context. Because different diseases share molecular pathways and targets in the cells, anti-obesity drugs discovered in other fields are a viable option for treating obesity. Recently, some drugs initially developed for other diseases, such as treating diabetes, tumors, depression, alcoholism, erectile dysfunction, and Parkinson's disease, have been found to exert potential anti-obesity effects, which provides another treatment prospect. In this review, we will discuss the potential benefits and barriers associated with these drugs being used as obesity medications by focusing on their mechanisms of action when treating obesity. This could be a viable strategy for treating obesity as a significant advance in human health.

7.
Diabetol Metab Syndr ; 16(1): 21, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38238828

RESUMEN

BACKGROUND: Time in range (TIR), as an important glycemic variability (GV) index, is clearly associated with disease complications in type 1 diabetes (T1D). Metabolic dysregulation is also involved in the risks of T1D complications. However, the relationship between metabolites and TIR remains poorly understood. We used metabolomics to investigate metabolic profile changes in T1D patients with different TIR. METHODS: This study included 85 T1D patients and 81 healthy controls. GV indices, including TIR, were collected from continuous glucose monitoring system. The patients were compared within two subgroups: TIR-L (TIR < 50%, n = 21) and TIR-H (TIR > 70%, n = 14). To screen for differentially abundant metabolites and metabolic pathways, serum and urine samples were obtained for untargeted metabolomics by ultra-performance liquid chromatography‒mass spectrometry. Correlation analysis was conducted with GV metrics and screened biomarkers. RESULTS: Metabolites were significantly altered in T1D and subgroups. Compared with healthy controls, T1D patients had higher serum levels of 5-hydroxy-L-tryptophan, 5-methoxyindoleacetate, 4-(2-aminophenyl)-2,4-dioxobutanoate, and 4-pyridoxic acid and higher urine levels of thromboxane B3 but lower urine levels of hypoxanthine. Compared with TIR-H group, The TIR-L subgroup had lower serum levels of 5-hydroxy-L-tryptophan and mevalonolactone and lower urine levels of thromboxane B3 and phenylbutyrylglutamine. Dysregulation of pathways, such as tryptophan, vitamin B6 and purine metabolism, may be involved in the mechanism of diabetic complications related to glycemic homeostasis. Mevalonolactone, hypoxanthine and phenylbutyrylglutamine showed close correlation with TIR. CONCLUSIONS: We identified altered metabolic profiles in T1D individuals with different TIR. These findings provide new insights and merit further exploration of the underlying molecular pathways relating to diabetic complications.

8.
J Diabetes Investig ; 15(5): 614-622, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251792

RESUMEN

AIM: This study aims to investigate the association of glycemia risk index (GRI), a novel composite metric derived from continuous glucose monitoring (CGM), with arterial stiffness in patients with type 2 diabetes. MATERIALS AND METHODS: A total of 342 adults with type 2 diabetes were enrolled between April and June 2023 from 11 communities in Shanghai, China. Medical examinations, including measurements of anthropometric parameters, blood pressure, and venous blood samples were conducted. Brachial-ankle pulse wave velocity (baPWV) was examined to evaluate arterial stiffness. All the participants underwent a 14 day CGM recording and GRI was calculated from the CGM data. RESULTS: The mean age was 70.3 ± 6.8 years, and 162 (47.4%) were male. Participants with a higher baPWV had significantly higher levels of GRI and hyperglycemia component (both P for trend < 0.05). Linear regression revealed the significant positive linear associations of the GRI with baPWV in unadjusted or adjusted models (All P < 0.05). In the multivariable logistic analysis, each increase in the GRI quartile was associated with a 1.30-fold (95% CI 1.01-1.68, P for trend < 0.05) higher prevalence of increased arterial stiffness after adjustment for age, sex, BMI, diabetes duration, current smoking status, blood pressure, and lipid profile. Subgroup analyses showed that the association between the GRI quartiles and increased arterial stiffness was stronger among participants with a diabetes duration ≥15 years (P for interaction = 0.014). CONCLUSION: Glycemia risk index assessed by continuous glucose monitoring is associated with increased arterial stiffness in type 2 diabetes.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Rigidez Vascular , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/complicaciones , Masculino , Femenino , Anciano , Glucemia/análisis , China/epidemiología , Factores de Riesgo , Persona de Mediana Edad , Análisis de la Onda del Pulso , Índice Tobillo Braquial , Automonitorización de la Glucosa Sanguínea , Hiperglucemia/epidemiología , Hiperglucemia/sangre , Hiperglucemia/complicaciones , Estudios Transversales , Estudios de Seguimiento , Biomarcadores/sangre
9.
J Nutr Biochem ; 124: 109533, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37977406

RESUMEN

The prevalences of diabetes mellitus and obesity are increasing yearly and has become a serious social burden. In addition to genetic factors, environmental factors in early life development are critical in influencing the prevalence of metabolic disorders in offspring. A growing body of evidence suggests the critical role of early methyl donor intervention in offspring health. Emerging studies have shown that methyl donors can influence offspring metabolism through epigenetic modifications and changing metabolism-related genes. In this review, we focus on the role of folic acid, betaine, vitamin B12, methionine, and choline in protecting against metabolic disorders in offspring. To address the current evidence on the potential role of maternal methyl donors, we summarize clinical studies as well as experimental animal models that support the impact of maternal methyl donors on offspring metabolism and discuss the mechanisms of action that may bring about these positive effects. Given the worldwide prevalence of metabolic disorders, these findings could be utilized in clinical practice, in which methyl donor supplementation in the early life years may reverse metabolic disorders in offspring and block the harmful intergenerational effect.


Asunto(s)
Suplementos Dietéticos , Enfermedades Metabólicas , Animales , Betaína/farmacología , Betaína/uso terapéutico , Metilación de ADN , Ácido Fólico/farmacología , Ácido Fólico/uso terapéutico , Enfermedades Metabólicas/prevención & control , Humanos , Femenino , Embarazo
10.
Cell Signal ; 114: 111009, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38092300

RESUMEN

AIMS: Glucokinase (GCK) acts as the glucose sensor in maintaining glucose homeostasis. The inactivating mutation of the GCK gene leads to glucokinase-maturity onset diabetes of the young (GCK-MODY). This study aims to gain further insights into the molecular alterations triggered by GCK partial inactivation in hepatocytes, potentially underlying the favorable prognosis of GCK-MODY. MAIN METHODS: A GCK knockdown HepG2 cell model was established, and the integration of proteomics and metabolomics was used to gain a comprehensive understanding of the molecular pathway changes caused by GCK inactivation in the liver. KEY FINDINGS: Proteomic analysis identified 257 differential proteins. KEGG pathway enrichment analysis showed that protein expression changes in the GCK knockdown group were significantly enriched in central carbon metabolism, the TCA cycle, amino acid metabolism and the oxidative phosphorylation pathway. Among them, enzymes in the TCA cycle (PC, IDH2, SDH) were significantly downregulated in GCK-knockdown group. Targeted metabolomics revealed that in the GCK knockdown hepatocytes, TCA cycle intermediates were significantly decreased, including pyruvate, oxaloacetate, citrate and succinic acid, and three metabolites increased including glycine, betaine and homocysteine. These metabolic alterations in turn reduced the accumulation of reactive oxygen species in GCK knockdown hepatocytes. Correlation analysis indicated that TCA cycle metabolites were positively correlated with proteins involved in the TCA cycle, carbon metabolism, glycolysis, Ras signaling, fibrosis and inflammation. SIGNIFICANCE: In conclusion, GCK knockdown reduced TCA cycle flux and oxidative stress in hepatocytes by influencing the levels of key transcription factors and enzymes, providing a comprehensive understanding of the effects of GCK partial inactivation on liver metabolism and molecular mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucoquinasa , Humanos , Glucoquinasa/genética , Glucoquinasa/metabolismo , Proteómica , Hepatocitos/metabolismo , Hígado/metabolismo , Glucosa , Mutación
11.
J Diabetes ; 16(1): e13477, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37750029

RESUMEN

AIMS: The incidence of type 2 diabetes in China has exhibited an increasing trend, including younger individuals, over the past years. Early-onset type 2 diabetes (EOT2D) refers to diabetes diagnosed before 40 years of age. These patients have poor metabolic control and are highly susceptible to diabetic complications, which poses challenges for treatment. However, few studies have reported on the treatment of EOT2D. We determined clinical features and trends in drug use in patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: This retrospective study was performed at the Endocrinology Ward, Peking Union Medical College Hospital (PUMCH). "Diabetes" was used when searching PUMCH's Electronic Medical Record Analytical Database to obtain clinical data of patients between January 2013 and May 2022. RESULTS: The analysis included 1590 patients with T2DM. Among them, 609 (38.3%) had EOT2D. Compared with late-onset type 2 diabetes (LOT2D) patients, EOT2D patients exhibited worse glycemic control and higher body weight and lipid levels despite significant age differences. EOT2D patients also had a higher risk of diabetic retinopathy and nephropathy. Under the general trend of increasing use of dipeptidylpeptidase-4 inhibitors, sodium-glucose cotransporter-2 inhibitors, and glucagon-like peptide-1 agonists, patients with EOT2D were more likely to use organ-protective drugs. CONCLUSIONS: Compared with LOT2D patients, EOT2D patients have a longer course of diabetes, worse metabolic control, and a higher rate of developing microvascular complications. The administration of combined therapy, including new agents, may require consideration when selecting hypoglycemic agents for treating EOT2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Estudios Retrospectivos , Hipoglucemiantes/uso terapéutico , Retinopatía Diabética/complicaciones
12.
Acta Diabetol ; 61(1): 107-115, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37704826

RESUMEN

AIMS: Maturity-onset diabetes of the young (MODY) is an autosomal dominant monogenic form of diabetes, and glucokinase-maturity-onset diabetes of the young (GCK-MODY), or MODY 2, being the most prevalent type. However, the presence of copy number variants (CNVs) may lead to misdiagnoses, as genetic testing for MODY is typically reliant on sequencing techniques. This study aimed to describe the process of diagnosis in a Chinese pedigree with an exon 8-10 deletion of the GCK gene. METHODS: This study collected clinical data and medical history through direct interviews with the patient and reviewing relevant medical records. Sanger sequencing and whole exome sequencing (WES) were conducted over years of follow up. WES-based CNV sequencing technology was used to detect CNVs and the results were validated by multiplex ligation-dependent amplification dosage assay (MLPA). Additionally, we reviewed the previously reported cases caused by heterozygous exon deletion of the GCK gene. RESULTS: WES-based CNV detection revealed a heterozygous exon 8-10 deletion in the GCK gene within this particular pedigree after Sanger sequencing and WES failed to find causal variants in single nucleotide variations (SNVs) and small indels. The deletion was considered pathogenic according to ACMG/AMP and ClinGen guidelines. Most of the previously reported cases caused by heterozygous exon deletion or whole gene deletion of the GCK gene present similarly to GCK-MODY caused by SNVs and small indels. CONCLUSIONS: This study contributed to progress in our comprehension of the mutation spectrum of the GCK gene and underscored the significance of CNV detection in the genetic testing of MODY.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Eliminación de Gen , Pruebas Genéticas/métodos , Glucoquinasa/genética , Mutación
13.
Food Funct ; 15(1): 110-124, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38044717

RESUMEN

Increasing evidence supports the existence of fetal-originated adult diseases. Recent research indicates that the intrauterine environment affects the fetal hypothalamic energy intake center. Inulin is a probiotic that can moderate metabolic disorders, but whether maternal inulin intervention confers long-term metabolic benefits to lipid metabolism in offspring in their adult lives and the mechanism involved are unknown. Here, we used a maternal overnutrition model that was induced by excess energy intake before and during pregnancy and lactation and maternal inulin intervention was performed during pregnancy and lactation. The hypothalamic genome methylation in offspring was analyzed using a methylation array. The results showed that maternal inulin treatment modified the maternal high-fat diet (HFD)-induced increases in body weight, adipose tissue weight, and serum insulin and leptin levels and decreases in serum adiponectin levels. Maternal inulin intervention regulated the impairments in hypothalamic leptin resistance, induced the methylation of Socs3, Npy, and Il6, and inhibited the methylation of Lepr in the hypothalamus of offspring. In conclusion, maternal inulin intervention modifies offspring lipid metabolism, and the underlying mechanism involves the methylation of genes in the hypothalamus feeding circuit.


Asunto(s)
Trastornos del Metabolismo de los Lípidos , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Humanos , Leptina , Dieta Alta en Grasa/efectos adversos , Obesidad/genética , Obesidad/metabolismo , Inulina/farmacología , Inulina/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Hipotálamo/metabolismo , Lípidos , Fenómenos Fisiologicos Nutricionales Maternos
14.
mBio ; 15(1): e0203223, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38055342

RESUMEN

Gut microbiota exert influence on gastrointestinal mucosal permeability, bile acid metabolism, short-chain fatty acid synthesis, dietary fiber fermentation, and farnesoid X receptor/Takeda G protein-coupled receptor 5 (TGR5) signal transduction. The incretin glucagon-like peptide 1 (GLP-1) is mainly produced by L cells in the gut and regulates postprandial blood glucose. Changes in gut microbiota composition and function have been observed in obesity and type 2 diabetes (T2D). Meanwhile, the function and rhythm of GLP-1 have also been affected in subjects with obesity or T2D. Therefore, it is necessary to discuss the link between the gut microbiome and GLP-1. In this review, we describe the interaction between GLP-1 and the gut microbiota in metabolic diseases. On the one hand, gut microbiota metabolites stimulate GLP-1 secretion, and gut microbiota affect GLP-1 function and rhythm. On the other hand, the mechanism of action of GLP-1 on gut microbiota involves the inflammatory response. Additionally, we discuss the effects and mechanism of various interventions, such as prebiotics, probiotics, antidiabetic drugs, and bariatric surgery, on the crosstalk between gut microbiota and GLP-1. Finally, we stress that gut microbiota can be used as a target for metabolic diseases, and the clinical application of GLP-1 receptor agonists should be individualized.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Péptido 1 Similar al Glucagón , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Obesidad , Transducción de Señal
15.
J Nutr Biochem ; 123: 109490, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37865384

RESUMEN

Maternal high-fat diet (HFD) is related to an increased risk of glucose metabolism disorders throughout the whole life of offspring. The pancreas is a glucose homeostasis regulator. Accumulating evidence has revealed that maternal HFD affects offspring pancreas structure and function. However, the potential mechanism remains unclear. In this study, the mouse dam was fed with HFD or control diet (CD) during prepregnancy, pregnancy and lactation. The pancreatic insulin secretion function and islet genome methylome of offspring were analyzed. Pancreatic islet specific gene methylation was detected by using MeDIP qPCR. The results showed that body weight, blood glucose after oral glucose loads, fasting serum insulin, and HOMA-IR index values were significantly higher in male 12-week-old offspring from HFD dams than in the offspring from CD dams. Maternal HFD induced insulin secretion defects in male offspring. Compared with that in maternal CD group, methylation of the Abcc8 and Kcnj11 genes was increased in maternal HFD group in male offspring pancreatic islets. Furthermore, the expression levels of Abcc8 and Kcnj11 were downregulated by intrauterine exposure to a maternal HFD. In summary, maternal HFD results in a long-term functional disorder of the pancreas that is involved in insulin secretion-related gene DNA hypermethylation.


Asunto(s)
Dieta Alta en Grasa , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Ratones , Masculino , Animales , Humanos , Dieta Alta en Grasa/efectos adversos , Metilación de ADN , Glucosa/metabolismo , Expresión Génica , Páncreas/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos
16.
Cancer Cell Int ; 23(1): 302, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037057

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation accounts for a large proportion of AML patients and diagnosed with poor prognosis. Although the prognosis of FLT3-ITD AML has been greatly improved, the drug resistance frequently occurred in the treatment of FLT3 targeting drugs. GNF-7, a multitargeted kinase inhibitor, which provided a novel therapeutic strategy for overriding leukemia. In this study, we explored the antitumor activity of GNF-7 against FLT3-ITD and clinically-relevant drug resistance in FLT3 mutant AML. METHODS: Growth inhibitory assays were performed in AML cell lines and Ba/F3 cells expressing various FLT3 mutants to evaluate the antitumor activity of GNF-7 in vitro. Western blotting was used to examine the inhibitory  effect of GNF-7 on FLT3 and its downstream pathways. Molecular docking and cellular thermal shift assay (CETSA) were performed to demonstrate the binding of FLT3 to GNF-7. The survival benefit of GNF-7 in vivo was assessed in mouse models of transformed Ba/F3 cells harboring FLT3-ITD and FLT3-ITD/F691L mutation. Primary patient samples and a patient-derived xenograft (PDX) model were also used to determine the efficacy of GNF-7. RESULTS: GNF-7 inhibited the cell proliferation of Ba/F3 cells expressing FLT3-ITD and exhibited potently anti-leukemia activity on primary FLT3-ITD AML samples. Moreover, GNF-7 could bind to FLT3 protein and inhibit the downstream signaling pathway activated by FLT3 including STAT5, PI3K/AKT and MAPK/ERK. In vitro and in vivo studies showed that GNF-7 exhibited potent inhibitory activity against FLT3-ITD/F691L that confers resistant to quizartinib (AC220) or gilteritinib. Importantly, GNF-7 showed potent cytotoxic effect on leukemic stem cells, significantly extend the survival of PDX model and exhibited similar therapy effect compared with gilteritinib. CONCLUSIONS: Our results show that GNF-7 is a potent FLT3-ITD inhibitor and may become a promising lead compound applied for treating some of the clinically drug resistant patients.

17.
Endocrinology ; 165(1)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37950364

RESUMEN

The incidence of glucose and lipid metabolism diseases, including type 2 diabetes, obesity, metabolic syndrome, and nonalcoholic fatty liver disease, is rising, which places an enormous burden on people around the world. However, the mechanism behind these disorders remains incompletely understood. N6-methyladenosine (m6A) is 1 type of posttranscriptional RNA modification, and research has shown that it plays a crucial role in several metabolic diseases. m6A methylation is reversibly and dynamically regulated by methyltransferases (writers), demethylases (erasers), and m6A binding proteins (readers). Dysregulation of RNA m6A modification is related to different metabolic processes. Targeting RNA m6A methylation is a potential treatment strategy for these chronic metabolic diseases. This review discusses studies on RNA m6A modification in metabolic diseases and existing therapeutic drugs, with the aim of providing a concise perspective on its potential applications in managing metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Trastornos del Metabolismo de los Lípidos , Enfermedades Metabólicas , Humanos , ARN , Glucosa , Diabetes Mellitus Tipo 2/genética , Lípidos
18.
Nutrients ; 15(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37960204

RESUMEN

The incidence of type 2 diabetes is increasing every year and has become a serious public health problem. In addition to genetic factors, environmental factors in early life development are risk factors for diabetes. There is growing evidence that the gut microbiota plays an important role in glucose metabolism, and the gut microbiota of pregnant women with gestational diabetes mellitus (GDM) differs significantly from that of healthy pregnant women. This article reviews the role of maternal gut microbiota in offspring glucose metabolism. To explore the potential mechanisms by which the gut microbiota affects glucose metabolism in offspring, we summarize clinical studies and experimental animal models that support the hypothesis that the gut microbiota affects glucose metabolism in offspring from dams with GDM and discuss interventions that could improve glucose metabolism in offspring. Given that adverse pregnancy outcomes severely impact the quality of survival, reversing the deleterious effects of abnormal glucose metabolism in offspring through early intervention is important for both mothers and their offspring.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Microbioma Gastrointestinal , Animales , Humanos , Embarazo , Femenino , Diabetes Gestacional/epidemiología , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/epidemiología , Factores de Riesgo , Glucosa/metabolismo
19.
Front Endocrinol (Lausanne) ; 14: 1265175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867516

RESUMEN

Obesity occurs when overall energy intake surpasses energy expenditure. White adipose tissue is an energy storage site, whereas brown and beige adipose tissues catabolize stored energy to generate heat, which protects against obesity and obesity-associated metabolic disorders. Metabolites are substrates in metabolic reactions that act as signaling molecules, mediating communication between metabolic sites (i.e., adipose tissue, skeletal muscle, and gut microbiota). Although the effects of metabolites from peripheral organs on adipose tissue have been extensively studied, their role in regulating adipocyte thermogenesis requires further investigation. Skeletal muscles and intestinal microorganisms are important metabolic sites in the body, and their metabolites play an important role in obesity. In this review, we consolidated the latest research on skeletal muscles and gut microbiota-derived metabolites that potentially promote adipocyte thermogenesis. Skeletal muscles can release lactate, kynurenic acid, inosine, and ß-aminoisobutyric acid, whereas the gut secretes bile acids, butyrate, succinate, cinnabarinic acid, urolithin A, and asparagine. These metabolites function as signaling molecules by interacting with membrane receptors or controlling intracellular enzyme activity. The mechanisms underlying the reciprocal exchange of metabolites between the adipose tissue and other metabolic organs will be a focal point in future studies on obesity. Furthermore, understanding how metabolites regulate adipocyte thermogenesis will provide a basis for establishing new therapeutic targets for obesity.


Asunto(s)
Tejido Adiposo Pardo , Microbioma Gastrointestinal , Humanos , Tejido Adiposo Pardo/metabolismo , Adipocitos/metabolismo , Obesidad/metabolismo , Termogénesis/fisiología , Músculo Esquelético/metabolismo
20.
Diabetol Metab Syndr ; 15(1): 206, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875989

RESUMEN

BACKGROUND: Maturity-onset diabetes of the young type 2 (MODY2) is a rare genetic disorder characterized as mild fasting hyperglycemia with low risk of vascular complications caused by glucokinase gene mutation. This study aims to investigate metabolites alteration associated with MODY2, exploring possible mechanism underlying characteristic clinical manifestations and low cardiovascular risks of MODY2 and providing serum metabolite biomarkers to facilitating MODY2 diagnosis. METHODS: Fasting serum samples from MODY2, type 1 diabetes (T1DM) and healthy individuals were collected. By using targeted metabolomics via liquid chromatography-tandem mass spectrometry platform, we quantified the metabolites involved in tricarboxylic acid (TCA) cycle and one-carbon metabolism. RESULTS: Metabolomic profiling revealed significant difference of intermediates from central metabolism cycle, methionine cycle and several amino acids between MODY2 and T1DM groups. Among these, serum citrate, α-ketoglutaric acid, serine, glycine, glutamine and homocysteine were significantly elevated in MODY2 patients compared with T1DM patients; and compared with healthy subjects, malate and methionine levels were significantly increased in the two groups of diabetic patients. The correlation analysis with clinical indexes showed that α- ketoglutarate, serine, glycine, and glutamine were negatively correlated with blood glucose indicators including fasting blood glucose, HbA1c, and GA, while citrate was positively correlated with C-peptide. And homocysteine displayed positive correlation with HDL and negative with C-reactive protein, which shed light on the mechanism of mild symptoms and low risk of cardiovascular complications in MODY2 patients. A panel of 4 metabolites differentiated MODY2 from T1DM with AUC of 0.924, and a combination of clinical indices and metabolite also gained good diagnostic value with AUC 0.948. CONCLUSION: In this research, we characterized the metabolite profiles of TCA cycle and one-carbon metabolism in MODY2 and T1DM and identified promising diagnostic biomarkers for MODY2. This study may provide novel insights into the pathogenesis and clinical manifestations of MODY2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...