Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(9): 2885-2893, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407034

RESUMEN

Soft robots with magnetic responsiveness exhibit diverse motion modes and programmable shape transformations. While the fixed magnetization configuration facilitates coupling control of robot posture and motion, it limits individual posture control to some extent. This poses a challenge in independently controlling the robot's transformation and motion, restricting its versatile applications. This research introduces a multifunctional helical robot responsive to both light and magnetism, segregating posture control from movements. Light fields assist in robot shaping, achieving a 78% maximum diameter shift. Magnetic fields guide helical robots in multimodal motions, encompassing rotation, flipping, rolling, and spinning-induced propulsion. By controlling multimodal locomotion and shape transformation on demand, helical robots gain enhanced flexibility. This innovation allows them to tightly grip and wirelessly transport designated payloads, showcasing potential applications in drug delivery, soft grippers, and chemical reaction platforms. The unique combination of structural design and control methods holds promise for intelligent robots in the future.

2.
ACS Appl Mater Interfaces ; 15(48): 56223-56232, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37988636

RESUMEN

Despite considerable progress having been made in the research of soft actuators, there remains a grand challenge in creating a facile manufacturing process that offers both extensive programmability and exceptional actuation capabilities. Taking inspiration from uncomplicated small organisms, this work aims to develop soft actuators that can be mobilized through straightforward design and control, similar to caterpillars or inchworms. They execute intricate actions and functions to meet survival needs in the most efficient manner possible. Here, a novel soft actuator with uniformly dispersed ferromagnetic microparticles but programmatic magnetic profile distribution is proposed by a convenient magnetization process. Benefiting from its high magnetic sensitivity and good matrix flexibility, the actuator can simultaneously achieve reversible, remote, and fast programmable shape transformation and controllable movement even in a magnetic field as low as 14 Gs. Complemented by intrinsic material properties and structural configuration, actuation employing spatial magnetization profiles can facilitate multiple modes of locomotion when subjected to magnetic fields, allowing for an efficient manipulation task of both solid and liquid media. More importantly, a finite element model is developed to assist in the design of the interaction between the alternating magnetic field and the magnetic torques. This advanced soft actuator would strongly push forward major breakthroughs in key applications such as intelligent sensors, disaster rescue, and wearable devices.

3.
ACS Nano ; 8(7): 6682-92, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24896225

RESUMEN

We report polarized femtosecond laser-light-mediated growth and programmable assembly of photoreduced silver nanoparticles into triply hierarchical micropatterns. Formation of erected arrays of nanoplates with a thickness as small as λ/27 (λ, the writing laser wavelength) level is demonstrated. The growth mechanism of nanoplates has been clarified: (i) the excited surface plasmons enhance the local electric field and lead to spatially selective growth of silver atoms at the opposite ends of dipoles induced on early created silver seeds; (ii) the optical attractive force overcomes electrostatic repulsion in the enhanced local electric field to assemble the silver nanoparticles directly. The triply hierarchical micropattern shape and location, the nanoplate orientation, and thickness are all attained in controlled fashion.

4.
Nanoscale ; 4(22): 6955-8, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23044631

RESUMEN

Gold nanodots were used as the precursory material to form micronanopatterns under pinpoint scanning by a tightly focused femtosecond laser beam. Different from the widely reported metal ions photoreduction mechanism, here gradient force in an optical trap generated around the laser focus is considered as the major mechanism for particle accumulation (focusing). It has been proven to be an effective method for gold micronanostructure fabrication, and the electronic resistivity of the resulting metals reached as high as 5.5 × 10(-8) Ω m, only twice that of the bulk material (2.4 × 10(-8) Ω m). This merit makes it a novel free interconnection technology for micronanodevice fabrication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA