Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 835
Filtrar
1.
J Dairy Sci ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38762109

RESUMEN

Buffaloes are vital contributors to the global dairy industry. Understanding the genetic basis of milk production traits in buffalo populations is essential for breeding programs and improving productivity. In this study, we conducted whole-genome resequencing on 387 buffalo genomes from 29 diverse Asian breeds, including 132 river buffaloes, 129 swamp buffaloes, and 126 crossbred buffaloes. We identified 36,548 copy number variant (CNVs) spanning 133.29 Mb of the buffalo genome, resulting in 2,100 copy number variant regions (CNVRs), with 1,993 shared CNVRs being found within the studied buffalo types. Analyzing CNVRs highlighted distinct genetic differentiation between river and swamp buffalo subspecies, verified by evolutionary tree and principal component analyses. Admixture analysis grouped buffaloes into river and swamp categories, with crossbred buffaloes displaying mixed ancestry. To identify candidate genes associated with milk production traits, we employed 3 approaches. First, we used Vst-based population differentiation, revealing 11 genes within CNVRs that exhibited significant divergence between different buffalo breeds, including genes linked to milk production traits. Second, expression quantitative loci (eQTL) analysis revealed differential expression of CNVR-driven genes (DECGs) associated with milk production traits. Notably, known milk production-related genes were among these DECGs, validating their relevance. Last, a genome-wide association study (GWAS) identified 3 CNVRs significantly linked to peak milk yield. Our study provides comprehensive genomic insights into buffalo populations and identifies candidate genes associated with milk production traits. These findings facilitate genetic breeding programs aimed at increasing milk yield and improving quality in this economically important livestock species.

2.
Adv Mater ; : e2404815, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719211

RESUMEN

The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm-2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg-1) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs.

3.
Sci Rep ; 14(1): 11462, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769348

RESUMEN

Einstein-Podolsky-Rosen (EPR) steering is commonly shared among multiple observers by utilizing unsharp measurements. Nevertheless, their usage is restricted to local measurements and does not encompass all nonlocal measurement-based cases. In this work, a method for finding beneficial local measurement settings has been expanded to include nonlocal measurement cases. This method is applicable for any bipartite state and offers benefits even in scenarios with a high number of measurement settings. Using the Greenberger-Horne-Zeilinger state as an illustration, we show that employing unsharp nonlocal measurements can activate the phenomenon of steering sharing in contrast to using local measurements. Furthermore, our findings demonstrate that nonlocal measurements with unequal strength possess a greater activation capability compared to those with equal strength. Our activation method generates fresh concepts for conservation and recycling quantum resources.

4.
Nature ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750363

RESUMEN

The baobab trees (genus Adansonia) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna1. These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history2,3. Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri, and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri.

5.
Front Aging Neurosci ; 16: 1383278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572153

RESUMEN

Objective: Alzheimer's disease (AD) is a prevalent neurodegenerative condition that significantly impacts both individuals and society. This study aims to evaluate the effectiveness of repetitive transcranial magnetic stimulation (rTMS) as a treatment for AD by summarizing the evidence from systematic reviews (SRs) and meta-analyses (MAs). Methods: SRs/MAs of rTMS for AD were collected by searching Embase, Web of Science, Cochrane Library, PubMed, CNKI, VIP, Sino-Med, and Wanfang databases. The search was conducted from database creation to January 23, 2024. Methodological quality, reporting quality and risk of bias were assessed using the Assessing Methodological Quality of Systematic Reviews 2 (AMSTAR-2), Risk of Bias in Systematic Reviews (ROBIS) tool and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). In addition, the quality of evidence for outcome measures was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE). Results: Eight SRs/MAs included in this study met the inclusion criteria. Based on the AMSTAR-2, 4 of the SRs/MA were classified as low quality, while the remaining 4 were deemed to be of very low quality. The PRISMA analysis revealed that out of the 27 items reporting, 16 achieved full reporting (100%). However, there were still some deficiencies in reporting, particularly related to protocol and registration, search strategy, risk of bias, and additional analysis. The ROBIS tool indicated that only 3 SRs/MAs had a low risk of bias. The GRADE assessment indicated that 6 outcomes were of moderate quality (18.75%), 16 were of low quality (50%), and 10 were classified as very low quality (31.25%). Conclusion: Based on the evidence collected, rTMS appears to be effective in improving cognitive function in AD patients, although the methodological quality of the SRs/MAs reduces the reliability of the conclusions and the overall quality is low. However, based on the available results, we still support the value of rTMS as an intervention to improve cognitive function in AD. In future studies, it is necessary to confirm the efficacy of rTMS in AD patients and provide more reliable and scientific data to contribute to evidence-based medicine.

6.
Front Immunol ; 15: 1336311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585260

RESUMEN

Envafolimab is a Chinese domestic innovative fusion of a humanized single-domain programmed death-ligand 1 (PD-L1) antibody (dAb) and human immunoglobulin IgG1 crystalline fragment (Fc) developed for subcutaneous injections. It was granted conditional market authorization by the China National Medical Product Administration (NMPA) in December 2021. Envafolimab is used to treat adult patients with previously treated microsatellite instability-high (MSI-H) or deficient mismatch repair (dMMR) advanced solid tumors, including patients with advanced colorectal cancer disease progression who were previously administered fluorouracil, oxaliplatin, and irinotecan, as well as other patients with advanced solid tumors who experienced disease progression after receiving standard treatment and had no other alternative treatment options. However, the lack of post-marketing clinical trial data requires conducting more clinical studies on the safety and efficacy of envafolimab in order to provide scientific basis and a reference for future therapeutic applications. In this paper, we report a case of severe skin necrosis and bleeding in the area of injection after subcutaneous administration of envafolimab in a patient diagnosed with hepatocellular carcinoma. We discuss issues that must be considered before administration of a PD-L1 inhibitor subcutaneously, which could induce immune mechanisms leading to skin necrosis in the area of injection.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma Hepatocelular , Neoplasias Hepáticas , Adulto , Humanos , Inmunoglobulina G , Progresión de la Enfermedad , Necrosis
7.
Bioorg Chem ; 147: 107380, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636432

RESUMEN

The COVID-19 pandemic continues to pose a threat to global health, and sounds the alarm for research & development of effective anti-coronavirus drugs, which are crucial for the patients and urgently needed for the current epidemic and future crisis. The main protease (Mpro) stands as an essential enzyme in the maturation process of SARS-CoV-2, playing an irreplaceable role in regulating viral RNA replication and transcription. It has emerged as an ideal target for developing antiviral agents against SARS-CoV-2 due to its high conservation and the absence of homologous proteases in the human body. Among the SARS-CoV-2 Mpro inhibitors, non-peptidic compounds hold promising prospects owing to their excellent antiviral activity and improved metabolic stability. In this review, we offer an overview of research progress concerning non-peptidic SARS-CoV-2 Mpro inhibitors since 2020. The efforts delved into molecular structures, structure-activity relationships (SARs), biological activity, and binding modes of these inhibitors with Mpro. This review aims to provide valuable clues and insights for the development of anti-SARS-CoV-2 agents as well as broad-spectrum coronavirus Mpro inhibitors.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Inhibidores de Proteasas , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Humanos , Antivirales/farmacología , Antivirales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Tratamiento Farmacológico de COVID-19 , Estructura Molecular , COVID-19/virología
8.
Sci Adv ; 10(17): eadk3852, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38657063

RESUMEN

Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.


Asunto(s)
Migración Animal , Genómica , Viento , Animales , Genómica/métodos , Hemípteros/genética , Genoma de los Insectos , Genética de Población
9.
Waste Manag ; 181: 44-56, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38583272

RESUMEN

Phosphate tailings (PT) was used to reduce the release of heavy metals (HMs) during pyrolysis and the leachable rate of residual HMs, and simultaneously improve the bioavailability of phosphorus in the sludge-based biochar. The concentration of heavy metals and the fractions determined by BCR method was used to investigate the release and the transformation of Zn, Pb, Mn, Ni and Cu during pyrolysis involved with the effects of temperature and the addition of PT. The respective pyrolysis experiments shows that the release of Zn and Pb increases with temperature for both sewage sludge (SS) and PT, and the bioavailable fractions (F1 + F2) of Mn, Ni, and Cu increases with temperature for PT. During co-pyrolysis, blended samples released lower quantities of Zn and Pb and presented lower bioavailability of HMs than the individual SS or PT. A synergistic effect of co-pyrolysis was evident for volatile Zn and Pb. The decomposition of CaMg (CO3)2 from PT produced CaO, by which the volatile ZnCl2 and PbCl2 were transformed into ZnO and PbO with less volatility and higher reactivity with SiO2 and Al2O3 than the chlorides. Then SiO2 and Al2O3 from SS acted as the final stabilizer to immobilize the oxides. The final product combined with SiO2 and Al2O3, such as ZnSiO4 and ZnAl2O4, were detected. The addition of PT also introduced more Ca and P into sludge to produce biochar with higher concentration of apatite phosphorus with higher bioavailability.


Asunto(s)
Metales Pesados , Fosfatos , Fósforo , Pirólisis , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Metales Pesados/química , Metales Pesados/análisis , Fósforo/química , Fosfatos/química , Carbón Orgánico/química
10.
J Asian Nat Prod Res ; : 1-8, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600044

RESUMEN

Two new triterpene fatty acid esters, 3ß-palmityloxy-12,27-cyclofriedoolean-14-en-11α-ol (1) and 3ß-palmityloxy-19α-hydroxyursane (2), together with 3ß-hydroxy-11-oxo-olean-12-enyl palmitate (3) were isolated from the potent anti-inflammatory active fraction of the petroleum ether-soluble part of Cirsium setosum ethanol extract. Compound 1 was found to be a rare 12,27-cyclopropane triterpenoid. Their structures were determined through spectral data analysis combined with literature reports. Furthermore, in vitro experiment, compounds 1-3 exhibited significant inhibitory effects on nitric oxide production in lipopolysaccharide-activated mouse RAW264.7 macrophages.

11.
Phytomedicine ; 128: 155412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579666

RESUMEN

BACKGROUND: Psoriasis is a long-lasting, inflammatory, continuous illness caused through T cells and characterized mainly by abnormal growth and division of keratinocytes. Currently, corticosteroids are the preferred option. However, prolonged use of traditional topical medication can lead to adverse reactions and relapse, presenting a significant therapeutic obstacle. Improved alternative treatment options are urgently required. Formononetin (FMN) is a representative component of isoflavones in Huangqi (HQ) [Astragalus membranaceus (Fisch.) Bge.]. It possesses properties that reduce inflammation, combat oxidation, inhibit tumor growth, and mimic estrogen. Although FMN has been shown to ameliorate skin barrier devastation via regulating keratinocyte apoptosis and proliferation, there are no reports of its effectiveness in treating psoriasis. OBJECTIVE: Through transcriptomics clues and experimental investigation, we aimed to elucidate the fundamental mechanisms underlying FMN's action on psoriasis. MATERIALS AND METHODS: Cell viability was examined using CCK8 assay in this study. The results of analysis of differentially expressed genes (DEGs) between FMN-treated HaCaT cells and normal HaCaT cells using RNA-sequencing (RNA-seq) were presented on volcano plots and heatmap. Enrichment analysis was conducted on DEGs using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), and results were validated through RT-qPCR verification. After 12 days of FMN treatment in psoriasis mouse model, we gauged the PASI score and epidermis thickness. A variety of techniques were used to assess FMN's effectiveness on inhibiting inflammation and proliferation related to psoriasis, including RT-qPCR, HE staining, western blot, and immunohistochemistry (IHC). RESULTS: The findings indicated that FMN could suppress the growth of HaCaT cells using CCK8 assay (with IC50 = 40.64 uM) and 20 uM FMN could reduce the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) to the greatest extent. FMN-treated HaCaT cells exhibited 985 up-regulated and 855 down-regulated DEGs compared to normal HaCaT cells. GO analysis revealed that DEGs were linked to interferon (IFN) signaling pathway. Furthermore, FMN improved pathological features, which encompassed decreased erythema, scale, and thickness scores of skin lesions in psoriasis mouse model. In vivo experiments confirmed that FMN down-regulated expression of IFN-α, IFN-ß, IFN-γ, decreased secretion of TNF-α and IL-17 inflammatory factors, inhibited expression of IFN-related chemokines included Cxcl9, Cxcl10, Cxcl11 and Cxcr3 and reduced expression of transcription factors p-STAT1, p-STAT3 and IFN regulatory factor 1 (IRF1) in the imiquimod (IMQ) group. CONCLUSIONS: In summary, these results suggested that FMN played an anti-inflammatory and anti-proliferative role in alleviating psoriasis by inhibiting IFN signaling pathway, and FMN could be used as a potential therapeutic agent.


Asunto(s)
Células HaCaT , Isoflavonas , Psoriasis , Transducción de Señal , Isoflavonas/farmacología , Psoriasis/tratamiento farmacológico , Animales , Transducción de Señal/efectos de los fármacos , Humanos , Ratones , Interferones , Supervivencia Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Astragalus propinquus/química , Ratones Endogámicos BALB C , Masculino , Modelos Animales de Enfermedad
12.
J Hazard Mater ; 469: 133990, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460261

RESUMEN

Heavy metal migration in soil poses a serious threat to the soil and groundwater. Understanding the migration pattern of heavy metals (HMs) under different factors could provide a more reasonable position for pollution evaluation and targetoriented treatment of soil heavy metal. In this study, the migration behavior of Pb and Cd in co-contaminated soil under different pH and ionic strength (NaCl concentration) was simulated using convective dispersion equation (CDE). We predicted the migration trends of Pb and Cd in soils after 5, 10, and 20 years via PHREEQC. The results showed that the migration time of Cd in the soil column experiment was about 60 days faster than that of Pb, and the migration trend was much steeper. The CDE was proved to describe the migration behavior of Pb and Cd (R2 > 0.75) in soil. The predicted results showed that Cd migrated to 15-20 cm of soil within 7 years and Pb stayed mainly in the top 0-6 cm of soil within 5 years as the duration of irrigation increased. Overall, our study is expected to provide new insight into the migration of heavy metal in soil ecosystems and guidance for reducing risk of heavy metal in the environment.

13.
Nanomaterials (Basel) ; 14(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38535632

RESUMEN

Lithium-sulfur (Li-S) batteries are expected to be one of the next generations of high-energy-density battery systems due to their high theoretical energy density of 2600 Wh kg-1. Embracing the trends toward flexibility, lightweight design, and cost-effectiveness, paper-based electrodes offer a promising alternative to traditional coated cathodes in Li-S batteries. Within paper-based electrodes, conductive fibers such as carbon nanotubes (CNTs) play a crucial role. They help to form a three-dimensional network within the paper matrix to ensure structural integrity over extended cycling while mitigating the shuttle effect by confining sulfur within the cathode. Herein, we explore how variously functionalized CNTs, serving as conductive fibers, impact the physical and electrochemical characteristics of paper-based sulfur cathodes in Li-S batteries. Specifically, graphitized hydroxylated carbon nanotubes (G-CNTs) exhibit remarkable capacity at low currents owing to their excellent conductivity and interaction with lithium polysulfide (LiPS), achieving the highest initial specific capacity of 1033 mAh g-1 at 0.25 C (1.1 mA cm-2). Aminated multi-walled carbon nanotubes (NH2-CNTs) demonstrate an enhanced affinity for LiPS due to the -NH2 groups. However, the uneven distribution of these fibers may induce electrode surface passivation during charge-discharge cycles. Notably, hydroxylated multi-walled carbon nanotubes (OH-CNTs) can establish a uniform and stable 3D network with plant fibers, showcasing superior mechanical properties and helping to mitigate Li2S agglomeration while preserving the electrode porosity. The paper-based electrode integrated with OH-CNTs even retains a specific capacity of approximately 800 mAh g-1 at about 1.25 C (5 mA cm-2), demonstrating good sulfur utilization and rate capacity compared to other CNT variants.

14.
Toxics ; 12(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38535955

RESUMEN

BACKGROUND: While mounting evidence suggests a connection between environmental contaminants and sleep problems, it remains uncertain whether exposure to volatile organic compounds (VOCs) specifically is associated with such problems. METHODS: Data from the National Health and Nutrition Examination Survey program's five survey cycles (2005-2006, 2011-2018) were used to conduct cross-sectional research. Data on short sleep duration (SSD) and self-reported trouble sleeping were collected from questionnaire data. Data on urine VOCs were gathered from laboratory data. The association between urinary VOCs and sleep problems was examined using weighted generalized linear models and the restricted cubic spline (RCS), weighted quantile sum (WQS), and quantile-based g-calculation (QGC) methods. RESULTS: In all, a total of 4131 general adult individuals were included in this study. The prevalence of SSD and self-reported trouble sleeping was 34.11% and 25.03%, respectively. 3,4-MHA, AAMA, AMCC, SBMA, and MA were risk factors for SSD after adjusting several covariates, with the largest effect being AMCC (OR = 1.47, 95% CI: 1.08, 2.02). Risk factors for sleep issues included AAMA, AMCC, CEMA, CYMA, DGBMA, 2HPMA, 3HPMA, MA, and PGA, with AMCC having the highest impact with an OR of 1.69 (95% CI: 1.28, 2.22). Both the WQS model and the QGC model showed that the co-exposure to VOCs was positively associated with SSD and self-reported trouble sleeping, with AMCC being the most influential VOC. CONCLUSIONS: According to our research, high levels of single or mixed urine VOCs are linked to a higher prevalence of SSD and self-reported trouble sleeping in the general adult population of the United States. Further prospective and experimental studies are needed in the future to validate these potential relationships and explore the underlying mechanisms.

15.
Sci Rep ; 14(1): 7312, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538650

RESUMEN

Urinary incontinence is a common disease among middle-aged and elderly women, which not only affects the physical and mental health of patients, but also brings a great medical burden to society. Obesity is a known risk factor for urinary incontinence and is the most common secondary cause of hyperlipidemia. Most obese patients also suffer from hyperlipidemia in the clinic. However, few studies have explored the role of hyperlipidemia in women with urinary incontinence. Using data from the 2005-2018 National Health and Nutrition Examination Survey (NHANES), we aimed to evaluated the independent associations of high body mass index and hyperlipidemia with urinary incontinence in Americans by conducting a weighted multivariate logistic regression model. Additive interactions were also assessed using the relative excess risk due to interaction (RERI), attributed proportion of interaction (AP) and synergy index (S). This study demonstrated that hyperlipidemia was associated with a higher risk of stress urinary incontinence among women with obesity (OR = 1.52, 95% CI = 1.03-2.25), and there was a significant synergistic effect of hyperlipidemia and obesity on stress urinary incontinence(adjusted RERI: 3.75, 95% CI 0.30-7.20; adjusted AP: 0.67, 95% CI 0.54-0.80; adjusted S: 5.49, 95% CI 4.15-7.27). Moreover, fasting serum triglyceride lipids were the most relevant blood lipid indicator for the risk of stress urinary incontinence, especially among obese women younger than 50 years old, which contributes to the development of more refined lipid control protocols for patients with urinary incontinence in different age groups.


Asunto(s)
Hiperlipidemias , Incontinencia Urinaria de Esfuerzo , Incontinencia Urinaria , Anciano , Persona de Mediana Edad , Humanos , Femenino , Estados Unidos/epidemiología , Incontinencia Urinaria de Esfuerzo/etiología , Encuestas Nutricionales , Hiperlipidemias/complicaciones , Factores de Riesgo , Obesidad/complicaciones , Incontinencia Urinaria/etiología , Incontinencia Urinaria/complicaciones , Lípidos
16.
Cell Rep Methods ; 4(3): 100738, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38508188

RESUMEN

Spatially resolved epigenomic profiling is critical for understanding biology in the mammalian brain. Single-cell spatial epigenomic assays were developed recently for this purpose, but they remain costly and labor intensive for examining brain tissues across substantial dimensions and surveying a collection of brain samples. Here, we demonstrate an approach, epigenomic tomography, that maps spatial epigenomes of mouse brain at the scale of centimeters. We individually profiled neuronal and glial fractions of mouse neocortex slices with 0.5 mm thickness. Tri-methylation of histone 3 at lysine 27 (H3K27me3) or acetylation of histone 3 at lysine 27 (H3K27ac) features across these slices were grouped into clusters based on their spatial variation patterns to form epigenomic brain maps. As a proof of principle, our approach reveals striking dynamics in the frontal cortex due to kainic-acid-induced seizure, linked with transmembrane ion transporters, exocytosis of synaptic vesicles, and secretion of neurotransmitters. Epigenomic tomography provides a powerful and cost-effective tool for characterizing brain disorders based on the spatial epigenome.


Asunto(s)
Cromatina , Neocórtex , Ratones , Animales , Histonas/genética , Epigenómica/métodos , Lisina , Neocórtex/metabolismo , Mamíferos/metabolismo
17.
Crit Care Nurse ; 44(2): 13-20, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555967

RESUMEN

INTRODUCTION: Children receiving extracorporeal membrane oxygenation are prone to delirium. This case report describes the nursing care of a child with delirium who received venoarterial extracorporeal membrane oxygenation. Relevant interventions and precautions are also discussed. CLINICAL FINDINGS: A 6-year-old girl was admitted to the pediatric intensive care unit with a 2-day history of vomiting and fever. The child underwent cannulation for venoarterial extracorporeal membrane oxygenation. DIAGNOSIS: The child was diagnosed with acute fulminant myocarditis, cardiac shock, and ventricular arrhythmia. INTERVENTIONS: On the third day of extracorporeal membrane oxygenation, bedside nurses began using the Cornell Assessment of Pediatric Delirium to assess the child for delirium symptoms. The team of physicians and nurses incorporated a nonpharmacologic delirium management bundle into pediatric daily care. Delirium screening, analgesia and sedation management, sleep promotion, and family participation were implemented. OUTCOMES: During the 18 days of pediatric intensive care unit hospitalization, the child had 6 days of delirium: 1.5 days of hypoactive delirium, 1.5 days of hyperactive delirium, and 3 days of mixed delirium. The child was successfully discharged home on hospital day 22. CONCLUSION: Caring for a child with delirium receiving venoarterial extracorporeal membrane oxygenation required multidimensional nursing capabilities to prevent and reduce delirium while ensuring safe extracorporeal membrane oxygenation. This report may assist critical care nurses caring for children under similar circumstances.


Asunto(s)
Delirio , Oxigenación por Membrana Extracorpórea , Niño , Femenino , Humanos , Arritmias Cardíacas , Delirio/diagnóstico , Oxigenación por Membrana Extracorpórea/métodos , Choque Cardiogénico
18.
Biosens Bioelectron ; 254: 116201, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38507928

RESUMEN

Developing highly sensitive and selective methods that incorporate specific recognition elements is crucial for detecting small molecules because of the limited availability of small molecule antibodies and the challenges in obtaining sensitive signals. In this study, a generalizable photoelectrochemical-colorimetric dual-mode sensing platform was constructed based on the synergistic effects of a molecularly imprinted polymer (MIP)-aptamer sandwich structure and nanoenzymes. The MIP functionalized peroxidase-like Fe3O4 (Fe3O4@MIPs) and alkaline phosphatase mimic Zr-MOF labeled aptamer (Zr-mof@Apt) were used as the recognition elements. By selectively accumulating dibutyl phthalate (DBP), a small molecule target model, on Fe3O4@MIPs, the formation of Zr-MOF@Apt-DBP- Fe3O4@MIPs sandwich structure was triggered. Fe3O4@MIPs oxidized TMB to form blue-colored oxTMB. However, upon selective accumulation of DBP, the catalytic activity of Fe3O4@MIPs was inhibited, resulting in a lighter color that was detectable by the colorimetric method. Additionally, Zr-mof@Apt effectively catalyzed the hydrolysis of L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS), generating ascorbic acid (AA) that could neutralize the photogenerated holes to decrease the photocurrent signals for PEC sensing and reduce oxTMB for colorimetric testing. The dual-mode platform showed strong linearity for different concentrations of DBP from 1.0 pM to 10 µM (PEC) and 0.1 nM to 0.5 µM (colorimetry). The detection limits were 0.263 nM (PEC) and 30.1 nM (colorimetry) (S/N = 3), respectively. The integration of dual-signal measurement mode and sandwich recognition strategy provided a sensitive and accurate platform for the detection of small molecules.


Asunto(s)
Técnicas Biosensibles , Polímeros Impresos Molecularmente , Colorimetría/métodos , Peroxidasa/química , Peroxidasas
20.
J Bone Miner Res ; 39(4): 484-497, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38477789

RESUMEN

Rebound bone loss following denosumab discontinuation is an important clinical challenge. Current treatment strategies to prevent this fail to suppress the rise and overshoot in osteoclast-mediated bone resorption. In this study, we use a murine model of denosumab treatment and discontinuation to show the temporal changes in osteoclast formation and activity during RANKL inhibition and withdrawal. We show that the cellular processes that drive the formation of osteoclasts and subsequent bone resorption following withdrawal of RANKL inhibition precede the rebound bone loss. Furthermore, a rise in serum TRAP and RANKL levels is detected before markers of bone turnover used in current clinical practice. These mechanistic advances may provide insight into a more defined window of opportunity to intervene with sequential therapy following denosumab discontinuation.


Stopping denosumab, a medication commonly used to improve bone mass by blocking formation of bone resorbing osteoclasts, leads to a rebound loss in the bone which was gained during treatment. Current strategies to prevent this bone loss fail in most cases as they are unable to prevent the rise and overshoot in bone resorption by osteoclasts. Thie stems from an incomplete understanding of how osteoclasts behave during denosumab treatment and after treatment is discontinued. We use a mouse model of this phenomenon to show how osteoclast formation and activity changes throughout this process. We show that increases in the processes that drive the formation of osteoclasts can be detected in the circulation before bone loss occurs. These findings could therefore provide insight into a targeted 'window of opportunity' to intervene and prevent the rebound bone loss following stopping denosumab in patients.


Asunto(s)
Resorción Ósea , Denosumab , Osteoclastos , Ligando RANK , Animales , Osteoclastos/metabolismo , Osteoclastos/efectos de los fármacos , Ligando RANK/antagonistas & inhibidores , Ligando RANK/metabolismo , Denosumab/farmacología , Ratones , Resorción Ósea/patología , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/sangre , Factores de Tiempo , Fosfatasa Ácida Tartratorresistente/metabolismo , Femenino , Ratones Endogámicos C57BL , Biomarcadores/metabolismo , Biomarcadores/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...