Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 9(4): e0112623, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38506511

RESUMEN

The contamination of the plant phyllosphere with antibiotics and antibiotic resistance genes (ARGs), caused by application of antibiotics, is a significant environmental issue in agricultural management. Alternatively, biocontrol agents are environmentally friendly and have attracted a lot of interest. However, the influence of biocontrol agents on the phyllosphere resistome remains unknown. In this study, we applied biocontrol agents to control the wildfire disease in the Solanaceae crops and investigated their effects on the resistome and the pathogen in the phyllosphere by using metagenomics. A total of 250 ARGs were detected from 15 samples, which showed a variation in distribution across treatments of biocontrol agents (BA), BA with Mg2+ (T1), BA with Mn2+ (T2), and kasugamycin (T3) and nontreated (CK). The results showed that the abundance of ARGs under the treatment of BA-Mg2+ was lower than that in the CK group. The abundance of cphA3 (carbapenem resistance), PME-1 (carbapenem resistance), tcr3 (tetracycline antibiotic resistance), and AAC (3)-VIIIa (aminoglycoside antibiotic resistance) in BA-Mg2+ was significantly higher than that in BA-Mn2+ (P < 0.05). The abundance of cphA3, PME_1, and tcr3 was significantly negatively related to the abundance of the phyllosphere pathogen Pseudomonas syringae (P < 0.05). We also found that the upstream and downstream regions of cphA3 were relatively conserved, in which rpl, rpm, and rps gene families were identified in most sequences (92%). The Ka/Ks of cphA3 was 0 in all observed sequences, indicating that under the action of purifying selection, nonsynonymous substitutions are often gradually eliminated in the population. Overall, this study clarifies the effect of biocontrol agents with Mg2+ on the distribution of the phyllosphere resistome and provides evolutionary insights into the biocontrol process. IMPORTANCE: Our study applied metagenomics analysis to examine the impact of biocontrol agents (BAs) on the phyllosphere resistome and the pathogen. Irregular use of antibiotics has led to the escalating dissemination of antibiotic resistance genes (ARGs) in the environment. The majority of BA research has focused on the effect of monospecies on the plant disease control process, the role of the compound BA with nutrition elements in the phyllosphere disease, and the resistome is still unknown. We believe BAs are eco-friendly alternatives for antibiotics to combat the transfer of ARGs. Our results revealed that BA-Mg2+ had a lower relative abundance of ARGs compared to the CK group, and the phyllosphere pathogen Pseudomonas syringae was negatively related to three specific ARGs, cphA3, PME-1, and tcr3. These three genes also present different Ka/Ks. We believe that the identification of the distribution and evolution modes of ARGs further elucidates the ecological role and facilitates the development of BAs, which will attract general interest in this field.


Asunto(s)
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacología , Genes Bacterianos/genética , Bacterias , Tetraciclina/farmacología , Carbapenémicos/farmacología
2.
Front Plant Sci ; 15: 1325141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434434

RESUMEN

Understanding the response of soil microbial communities to pathogenic Ralstonia solanacearum is crucial for preventing bacterial wilt outbreaks. In this study, we investigated the soil physicochemical and microbial community to assess their impact on the pathogenic R.solanacearum through metagenomics. Our results revealed that certain archaeal taxa were the main contributors influencing the health of plants. Additionally, the presence of the pathogen showed a strong negative correlation with soil phosphorus levels, while soil phosphorus was significantly correlated with bacterial and archaeal communities. We found that the network of microbial interactions in healthy plant rhizosphere soils was more complex compared to diseased soils. The diseased soil network had more linkages, particularly related to the pathogen occurrence. Within the network, the family Comamonadaceae, specifically Ramlibacter_tataouinensis, was enriched in healthy samples and showed a significantly negative correlation with the pathogen. In terms of archaea, Halorubrum, Halorussus_halophilus (family: Halobacteriaceae), and Natronomonas_pharaonis (family: Haloarculaceae) were enriched in healthy plant rhizosphere soils and showed negative correlations with R.solanacearum. These findings suggested that the presence of these archaea may potentially reduce the occurrence of bacterial wilt disease. On the other hand, Halostagnicola_larseniia and Haloterrigena_sp._BND6 (family: Natrialbaceae) had higher relative abundance in diseased plants and exhibited significantly positive correlations with R.solanacearum, indicating their potential contribution to the pathogen's occurrence. Moreover, we explored the possibility of functional gene sharing among the correlating bacterial pairs within the Molecular Ecological Network. Our analysis revealed 468 entries of horizontal gene transfer (HGT) events, emphasizing the significance of HGT in shaping the adaptive traits of plant-associated bacteria, particularly in relation to host colonization and pathogenicity. Overall, this work revealed key factors, patterns and response mechanisms underlying the rhizosphere soil microbial populations. The findings offer valuable guidance for effectively controlling soil-borne bacterial diseases and developing sustainable agriculture practices.

3.
Front Plant Sci ; 14: 1259853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034579

RESUMEN

Biofertilizers have immense potential for enhancing agricultural productivity. However, there is still a need for clarification regarding the specific mechanisms through which these biofertilizers improve soil properties and stimulate plant growth. In this research, a bacterial agent was utilized to enhance plant growth and investigate the microbial modulation mechanism of soil nutrient turnover using metagenomic technology. The results demonstrated a significant increase in soil fast-acting nitrogen (by 46.7%) and fast-acting phosphorus (by 88.6%) upon application of the bacterial agent. This finding suggests that stimulated soil microbes contribute to enhanced nutrient transformation, ultimately leading to improved plant growth. Furthermore, the application of the bacterial agent had a notable impact on the accumulation of key genes involved in nitrogen cycling. Notably, it enhanced nitrification genes (amo, hao, and nar), while denitrification genes (nir and nor) showed a slight decrease. This indicates that ammonium oxidation may be the primary pathway for increasing fast-acting nitrogen in soils. Additionally, the bacterial agent influenced the composition and functional structure of the soil microbial community. Moreover, the metagenome-assembled genomes (MAGs) obtained from the soil microbial communities exhibited complementary metabolic processes, suggesting mutual nutrient exchange. These MAGs contained widely distributed and highly abundant genes encoding plant growth promotion (PGP) traits. These findings emphasize how soil microbial communities can enhance vegetation growth by increasing nutrient availability and regulating plant hormone production. This effect can be further enhanced by introducing inoculated microbial agents. In conclusion, this study provides novel insights into the mechanisms underlying the beneficial effects of biofertilizers on soil properties and plant growth. The significant increase in nutrient availability, modulation of key genes involved in nitrogen cycling, and the presence of MAGs encoding PGP traits highlight the potential of biofertilizers to improve agricultural practices. These findings have important implications for enhancing agricultural sustainability and productivity, with positive societal and environmental impacts.

4.
Sci Rep ; 13(1): 13932, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626107

RESUMEN

Tetracycline (TC) is a widely used antibiotic that adversely affects ecosystems and, therefore, must be removed from the environment. Owing to their strong ability to oxidise pollutants, including antibiotics, and selectivity for these pollutants, an improved oxidation method based on sulphate radicals (SO4·-) has gained considerable interest. In this study, a novel technique for removing TC was developed by activating peroxymonosulphate (PMS) using a ZnFe2O4 catalyst. Using the co-precipitation method, a ZnFe2O4 catalyst was prepared by doping zinc into iron-based materials, which increased the redox cycle, while PMS was active and facilitated the production of free radicals. According to electron paramagnetic resonance spectroscopy results, a ZnFe2O4 catalyst may activate PMS and generate SO4·-, HO·, O2·-, and 1O2 to eliminate TC. This research offers a new method for creating highly effective heterogeneous catalysts that can activate PMS and destroy antibiotics. The study proposes the following degradation pathways: hydroxylation and ring-opening of TC based on the products identified using ultra-performance liquid chromatography-mass spectrometry. These results illustrated that the prepared ZnFe2O4 catalyst effectively removed TC and exhibited excellent catalytic performance.


Asunto(s)
Contaminantes Ambientales , Compuestos Heterocíclicos , Ecosistema , Tetraciclina , Antibacterianos
5.
Open Life Sci ; 17(1): 1568-1578, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561499

RESUMEN

In this study, the data of fertility indicators of soil samples (0-20 cm) in 1980s, 2000 and 2015 in Chenzhou city were used, and the soil integrated fertility index (IFI) was calculated. The results showed that the soil pH was decreased, total nitrogen (TN), organic matter (OM), available phosphorus (AP) and potassium (AK), exchangeable calcium (Ca2+), magnesium (Mg2+) and available copper (Cu) contents were increased, total phosphorus (TP), available sulfur (S) and water-soluble chlorine (Cl-) contents were decreased, total potassium (TK), available boron (B), iron (Fe), manganese (Mn) and zinc (Zn) were decreased first and then increased. In 2015, most of the fields were higher in pH, OM, TN, AN, AK, Ca2+, Mg2+, S, Fe, Mn, Cu and Zn, suitable in B, but lower in TP, AP, TK, available molybdenum (Mo) and Cl-. Most of the fields were in the middle grade of IFI in 2000 and 2015, and the mean IFI increased from 0.492 to 0.556 from 2000 to 2015. Thus, for soil improvement, more attention should be paid to adjust soil pH, reduce the application of organic, nitrogen and calcium fertilizers, while increase the fertilizer application of other nutrients.

6.
Front Plant Sci ; 13: 1025122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407614

RESUMEN

Colonization by beneficial microbes can enhance plant tolerance to abiotic stresses. However, there are still many unknown fields regarding the beneficial plant-microbe interactions. In this study, we have assessed the amount or impact of horizontal gene transfer (HGT)-derived genes in plants that have potentials to confer abiotic stress resistance. We have identified a total of 235 gene entries in fourteen high-quality plant genomes belonging to phyla Chlorophyta and Streptophyta that confer resistance against a wide range of abiotic pressures acquired from microbes through independent HGTs. These genes encode proteins contributed to toxic metal resistance (e.g., ChrA, CopA, CorA), osmotic and drought stress resistance (e.g., Na+/proline symporter, potassium/proton antiporter), acid resistance (e.g., PcxA, ArcA, YhdG), heat and cold stress resistance (e.g., DnaJ, Hsp20, CspA), oxidative stress resistance (e.g., GST, PoxA, glutaredoxin), DNA damage resistance (e.g., Rad25, Rad51, UvrD), and organic pollutant resistance (e.g., CytP450, laccase, CbbY). Phylogenetic analyses have supported the HGT inferences as the plant lineages are all clustering closely with distant microbial lineages. Deep-learning-based protein structure prediction and analyses, in combination with expression assessment based on codon adaption index (CAI) further corroborated the functionality and expressivity of the HGT genes in plant genomes. A case-study applying fold comparison and molecular dynamics (MD) of the HGT-driven CytP450 gave a more detailed illustration on the resemblance and evolutionary linkage between the plant recipient and microbial donor sequences. Together, the microbe-originated HGT genes identified in plant genomes and their participation in abiotic pressures resistance indicate a more profound impact of HGT on the adaptive evolution of plants.

7.
Curr Microbiol ; 79(6): 176, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35488936

RESUMEN

The root phenotypic traits have been considered as important factors in shaping the rhizosphere microbiome and regulating plant growth. However, the relationships between root phenotypic traits and the rhizosphere bacterial community remain unclear. We investigated two fields with different developing tobacco roots by a long-term positioning test in Hengshi. The well-developed root system (WDR) showed much more superiority in root phenotypic traits, including total root length, total projection area, surface area, and root tip number, than the underdeveloped root system. The specific root traits in WDR provided more ecological niches for the rhizosphere microorganisms, contributing to a more diverse microbial community and a more complex microbial network. The total root length and root tip number were the key factors shaping bacterial communities in the rhizosphere. In turn, the phyla Acidobacteria and Bacteroidetes might play vital roles in modifying root development and promoting plant growth according to their positive correlation with root phenotypic traits. Linking root phenotypic traits to the microbiome may enhance our understanding of rhizospheric interactions and their roles in developing rhizosphere ecosystems.


Asunto(s)
Microbiota , Rizosfera , Bacterias/genética , Raíces de Plantas/microbiología , Microbiología del Suelo
8.
Front Plant Sci ; 13: 1116506, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36733585

RESUMEN

Tobacco target spot disease is caused by a ubiquitous soil-borne phytopathogen Rhizoctonia solani; the pathogenic mechanisms underlying the effects of R. solani remain unclear. Deeper understanding of the functional responses to R. solani during host plant infection would help identify the molecular mechanisms essential for successful host invasion. In this study, we performed global transcriptional analysis of R. solani during various stages (12, 24, 48, 72, 96, and 120 h) of tobacco infection via an RNA sequencing method, while utilizing the pathosystem model R. solani AG3-tobacco (Nicotiana tabacum L.). After R. solani inoculation, the number of differentially expressed genes of R. solani differed at the various time points. Moreover, several gene ontology and Kyoto encyclopedia of genes and genomes pathways were unique in different infection stages, especially with respect to the genes involved in plant cell wall degradation and catalysis of biotransformation reactions, such as the pectin metabolic process and pectin catabolic process. The overexpressing-PD8 N. benthamiana plants enhanced the susceptibility to R. solani. In addition, we found that large amounts of reactive oxygen species (ROS) were generated in tobacco after infected by R. solani. R. solani encoding FAD/NAD binding oxidoreductase and peroxidase gene family to eliminating ROS and counteract oxidative stress. Moreover, Perox3 was validated that can enhance the ability of scavenging ROS by co-injecting. Overall, our findings show that pectin-degrading enzymes and cytochrome P450 genes are critical for plant infection. These results provide comprehensive insights into R. solani AG3 transcriptome responses during tobacco invasion.

9.
Front Microbiol ; 12: 722626, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552573

RESUMEN

In the plant rhizosphere and endosphere, some fungal and bacterial species regularly co-exist, however, our knowledge about their co-existence patterns is quite limited, especially during invasion by bacterial wilt pathogens. In this study, the fungal communities from soil to endophytic compartments were surveyed during an outbreak of tobacco wilt disease caused by Ralstonia solanacearum. It was found that the stem endophytic fungal community was significantly altered by pathogen invasion in terms of community diversity, structure, and composition. The associations among fungal species in the rhizosphere and endosphere infected by R. solanacearum showed more complex network structures than those of healthy plants. By integrating the bacterial dataset, associations between fungi and bacteria were inferred by Inter-Domain Ecological Network (IDEN) approach. It also revealed that infected samples, including both the rhizosphere and endosphere, had more complex interdomain networks than the corresponding healthy samples. Additionally, the bacterial wilt pathogenic Ralstonia members were identified as the keystone genus within the IDENs of both root and stem endophytic compartments. Ralstonia members was negatively correlated with the fungal genera Phoma, Gibberella, and Alternaria in infected roots, as well as Phoma, Gibberella, and Diaporthe in infected stems. This suggested that those endophytic fungi may play an important role in resisting the invasion of R. solanacearum.

10.
Environ Res ; 200: 111715, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34297933

RESUMEN

Plant leaves are colonized by a remarkably diverse fungal microbiome, which contributes to host plant growth and health. However, responses of foliar fungal community to phytopathogen invasion and measures of the fungal community taken to resist or assist pathogens remain elusive. By utilizing high-throughput sequencing of internal transcribed spacer (ITS) amplicons, we studied the relationships between the foliar fungal community around the disease spot and the pathogen of brown spot disease. The pathogenic Alternaria was found to follow a dramatically decreased trend from the disease spot to its surrounding fungal communities, whose community structure also diverged substantially away from the disease spot community. With the increase of pathogenic Alternaria, diversity indexes, including Shannon, Pielou and Simpson, showed a trend of increasing first and then decreasing. Total network links and the average path distance exhibited strong negative and positive correlations with Alternaria, respectively. Five keystone members showed direct interactions with pathogenic Alternaria. Members of Botryosphaeria, Paraphoma and Plectosphaerella might act as key 'pathogen facilitators' to increase the severity and development of brown spot disease, while Pleospora and Ochrocladosporium might be important 'pathogen antagonists' to suppress the expansion of pathogenic Alternaria. Our study provides new insights in developing new strategies for leaf disease prediction or prevention.


Asunto(s)
Alternaria , Micobioma , Hojas de la Planta
11.
Bull Environ Contam Toxicol ; 106(5): 878-883, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33811509

RESUMEN

Tobacco readily accumulates cadmium (Cd), an unnecessary and poisonous element. A total of 107 soil and tobacco leaf samples were collected from South China, to clarify the quantitative relationship between soil properties and Cd content in tobacco leaves. The results showed that 86.9% of the total sampling points had soil cadmium in excess of standard value, and the ratio of active Cd content to total soil Cd content was 24.0%. The enrichment factor of tobacco Cd was 3.43. There was a significant positive correlation between Cd concentration in tobacco leaves and soil Cd content. Soil pH, organic matter and cation exchange amount were negatively correlated with the Cd enrichment factor of tobacco. This present study has provided a regression model of tobacco Cd content based on soil factors, which could accurately predict Cd content in different parts of tobacco.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , China , Hojas de la Planta/química , Suelo , Contaminantes del Suelo/análisis , Nicotiana
12.
Front Physiol ; 11: 588291, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240109

RESUMEN

The predatory insect Arma chinensis (Hemiptera: Pentatomidae) is widely distributed in China, where it is also used to control many agricultural and forest pests. The chemosensory genes expressed in its antennae play crucial roles in food-seeking and mating behaviors. To better understand the olfaction of A. chinensis antennae, we identified the genes related to food-seeking and mating. Sequencing of the antennal transcriptomes of full and hungry male and female A. chinensis revealed 38 odorant-binding proteins (OBPs), 1 chemosensory protein (CSP), 1 Niemann-Pick C2 protein (NPC2), 3 odorant receptors (ORs), 12 ionotropic receptors (IRs), 2 gustatory receptors (GRs), and 3 sensory neuron membrane proteins (SNMPs). These results were used to construct phylogenetic trees. A quantitative real-time PCR (qRT-PCR) analysis showed that the relative transcript levels of AchiGR1, AchiGR2, and AchiOBP28 were higher in female than in male antennae in both full and hungry insects, but that the expression of AchiOBP13 and AchiOBP16 was higher only in full A. chinensis females. Thus, the latter genes may encode proteins involved in oviposition selection behavior. AchiGRs (1 and 2), AchiIR6, and AchiOBPs (6-8, 12, 20-22, 28, and 34) were highly expressed only in the antennae of full males, indicating the participation of these genes in mate-searching or male pheromone recognition. The expression of AchiOBP31 in the antennae of starved males, AchiOBPs (15, 18, and 29) in the antennae of starved females, and AchiOBPs (3, 4, and 24) in the antennae of starved males and females suggested that these genes encode food-seeking functions. Our identification of chemosensory genes in A. chinensis antennae and their differential expression in full and hungry insects provides the basis for further functional studies on the chemoreception system of A. chinensis and the sex hormones of predatory insects.

13.
NPJ Biofilms Microbiomes ; 6(1): 8, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060424

RESUMEN

The microbiota colonizing the root endophytic compartment and surrounding rhizosphere soils contribute to plant growth and health. However, the key members of plant soil and endophytic microbial communities involved in inhibiting or assisting pathogen invasion remain elusive. By utilizing 16S high-throughput sequencing and a molecular ecological network (MEN) approach, we systematically studied the interactions within bacterial communities in plant endophytic compartments (stem and root) and the surrounding soil (bulk and rhizosphere) during bacterial wilt invasion. The endophytic communities were found to be strongly influenced by pathogen invasion according to analysis of microbial diversity and community structure and composition. Endophytic communities of the infected plants were primarily derived from soil communities, as assessed by the SourceTracker program, but with rare migration from soil communities to endophytic communities observed in healthy plants. Soil and endophytic microbiomes from infected plants showed modular topology and greater complexity in network analysis, and a higher number of interactions than those in healthy plants. Furthermore, interactions among microbial members revealed that pathogenic Ralstonia members were positively correlated with several bacterial genera, including Delftia, Stenotrophomonas, Bacillus, Clostridium XlVa, Fontibacillus, Acidovorax, Herminiimonas, and three unclassified bacterial genera, in infected plant roots. Our findings indicated that the pathogen invasion in the rhizosphere and endophytic compartments may be highly associated with bacteria that are normally not detrimental, and sometimes even beneficial, to plants.


Asunto(s)
Bacterias/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nicotiana/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , ADN Bacteriano/genética , ADN Ribosómico/genética , Filogenia , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Rizosfera , Análisis de Secuencia de ADN , Microbiología del Suelo
14.
Plant Physiol Biochem ; 146: 259-268, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31778931

RESUMEN

The HD-ZIP Ⅳ transcription factors have been identified and functional characterized in many plant species. However, no tobacco HD-ZIP IV gene has been isolated, and it is not yet known whether HD-ZIP IV genes are involved in controlling flavonols accumulation in plants. Here, we cloned a HD ZIP gene named NtHDG2 from Nicotiana tabacum, which belongs to the class IV of HD-ZIP family, and the NtHDG2-GFP fusion protein is localized to the nucleus. We further observed that the flavonols contents in the NtHDG2 overexpression leaves increase to 1.9-4.5 folds of that in WT plants, but in the NtHDG2-RNAi plants the flavonols contents reduce to 20.9%-52.7% of that in WT plants. The transcriptions of one regulatory gene NtMYB12, and three structural genes (NtPAL, NtF3'H, NtF3GT), contributing to flavonols biosynthesis, were significantly induced by NtHDG2. However, the transcription level of NtNAC002, a flavonols biosynthesis repressor, was also significantly up-regulated in NtHDG2-overexpression lines, but significantly down-regulated in the RNAi lines, indicating that HDG2 regulates the synthesis of flavonols as a complex regulatory network. Moreover, ectopic expression of NtHDG2 gene promoted the transcription of several AP2/ERF genes, including NtERF1-5, NtERF109, NtDREB1, and NtCIPK11, which participate in regulating root development and resistance to abiotic stresses. Our findings reveal the new function of HD-ZIP IV transcription factors in flavonoids biosynthesis, and indicate that HD-ZIP IV members may play an important role in plant resistance to abiotic stress. The NtHDG2 gene provides a promising target for genetically manipulating to increase the amounts of flavonols in tobacco leaves.


Asunto(s)
Nicotiana , Flavonoles , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio , Leucina Zippers , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...