Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Pediatr ; 12: 1292786, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699152

RESUMEN

Background: The mechanism of pulmonary arterial hypertension (PAH) after surgery/intervention for isolated venticlular septal defect (VSD) in children is unknown. Reliable prognostic indicators for predicting postoperative PAH are urgently needed. Prognostic nutration index (PNI) is widely used to predict postoperative complications and survival in adults, but it is unclear whether it can be used as an indicator of prognosis in children. Methods: A total of 251 children underwent VSD repair surgery or interventional closure in Hunan Children's Hospital from 2020 to 2023 were collected. A 1:1 propensity score matching (PSM) analysis was performed using the nearest neighbor method with a caliper size of 0.2 Logistics regression analysis is used to examine factors associated with the development of PAH. Results: The cut-off value for PNI was determined as 58.0. After 1:1 PSM analysis, 49 patients in the low PNI group were matched with high PNI group. Children in the low PNI group had higher risk of postoperative PAH (P = 0.002) than those in the high PNI group. Multivariate logistics regression analysis showed that PNI (RR: 0.903, 95% CI: 0.816-0.999, P = 0.049) and tricuspid regurgitation velocity (RR: 4.743, 95% CI: 1.131-19.897, P = 0.033) were independent prognostic factors for the development of PAH. Conclusion: PNI can be used as a prognostic indicator for PAH development after surgery/intervention in children with isolated VSD.

2.
J Affect Disord ; 356: 356-362, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621510

RESUMEN

BACKGROUND: Patients with pulmonary arterial hypertension (PAH) often present with anxiety, depression and cognitive deterioration. Structural changes in the cerebral cortex in PAH patients have also been reported in observational studies. METHODS: PAH genome-wide association (GWAS) including 162,962 European individuals was used to assess genetically determined PAH. GWAS summary statistics were obtained for cognitive performance, depression, anxiety and alterations in cortical thickness (TH) or surface area (SA) of the brain cortex, respectively. Two-sample Mendelian randomization (MR) was performed. Finally, sensitivity analyses including Cochran's Q test, MR-Egger intercept test, leave-one-out analyses, and funnel plot was performed. RESULTS: PAH had no causal relationship with depression, anxiety, and cognitive performance. At the global level, PAH was not associated with SA or TH of the brain cortex; at the functional regional level, PAH increased TH of insula (P = 0.015), pars triangularis (P = 0.037) and pars opercularis (P = 0.010) without global weighted. After global weighted, PAH increased TH of insula (P = 0.004), pars triangularis (P = 0.032), pars opercularis (P = 0.007) and rostral middle frontal gyrus (P = 0.022) while reducing TH of inferior parietal (P = 0.004), superior parietal (P = 0.031) and lateral occipital gyrus (P = 0.033). No heterogeneity and pleiotropy were detected. LIMITATIONS: The enrolled patients were all European and the causal relationship between PAH and the structure of the cerebral cortex in other populations remains unknown. CONCLUSION: Causal relationship between PAH and the brain cortical structure was implied, thus providing novel insights into the PAH associated neuropsychiatric symptoms.


Asunto(s)
Ansiedad , Corteza Cerebral , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Humanos , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Ansiedad/genética , Depresión/genética , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Masculino , Femenino , Cognición/fisiología , Imagen por Resonancia Magnética , Adulto , Persona de Mediana Edad
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 425-431, 2024 Apr 15.
Artículo en Chino | MEDLINE | ID: mdl-38660909

RESUMEN

Pulmonary arterial hypertension (PAH) is a severe disease characterized by abnormal pulmonary vascular remodeling and increased right ventricular pressure load, posing a significant threat to patient health. While some pathological mechanisms of PAH have been revealed, the deeper mechanisms of pathogenesis remain to be elucidated. In recent years, bioinformatics has provided a powerful tool for a deeper understanding of the complex mechanisms of PAH through the integration of techniques such as multi-omics analysis, artificial intelligence, and Mendelian randomization. This review focuses on the bioinformatics methods and technologies used in PAH research, summarizing their current applications in the study of disease mechanisms, diagnosis, and prognosis assessment. Additionally, it analyzes the existing challenges faced by bioinformatics and its potential applications in the clinical and basic research fields of PAH in the future.


Asunto(s)
Biología Computacional , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/fisiopatología , Hipertensión Arterial Pulmonar/etiología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/etiología
4.
Front Cardiovasc Med ; 10: 1219480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937284

RESUMEN

This study reports the first case of a patient with chromosomal 2p16.1p15 microduplication syndrome complicated by pulmonary arterial hypertension (PAH). A female infant was admitted to the hospital suffering from dyskinesia and developmental delay, and conventional echocardiography revealed an atrial septal defect (ASD), which was not taken seriously or treated at that time. Two years later, preoperative right heart catheterization for ASD closure revealed a mean pulmonary artery pressure (mPAP) of 45 mmHg. The mPAP was reduced, and the condition was stabilized after drug therapy. A genomic copy number duplication (3×) of at least 2.58 Mb in the 2p16.1p15 region on the paternal chromosome was revealed. Multiple Online Mendelian Inheritance in Man (OMIM) genes are involved in this genomic region, such as BCL11A, EHBP1, FAM161A, PEX13, and REL. EHBP1 promotes a molecular phenotypic transformation of pulmonary vascular endothelial cells and is thought to be involved in the rapidly developing PAH of this infant. Collectively, our findings contribute to the knowledge of the genes involved and the clinical manifestations of the 2p16.1p15 microduplication syndrome. Moreover, clinicians should be alert to the possibility of PAH and take early drug intervention when facing patients with 2p16.1p15 microduplications.

5.
Front Pediatr ; 11: 1189373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780047

RESUMEN

Objectives: We aimed to investigate the association between right ventricular longitudinal strain measured by two-dimensional speckle-tracking echocardiography (2D-STE) and right heart catheterization data in pediatric patients with pulmonary hypertension (PH). Methods: Two groups were evaluated, each consisting of 58 patients. Group 1, patients with PH; Group 2, normal matched controls. Data were collected from 58 patients with PH who underwent invasive hemodynamic evaluation. Standard transthoracic echocardiographic assessment was performed in all patients under the same circumstances. All patients underwent 2D-STE, and off-line analysis generated right ventricle longitudinal strain (RVLS) and right ventricular free wall strain (RVFW) and collected echocardiographic conventional parameters of right ventricular function, including the control group. The relationship between invasive characteristics and right ventricular function parameters was analyzed. Results: In all, 58 PH patients were included in our study. The mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) were strongly correlated with right ventricular free wall strain (RVFW) and right ventricular longitudinal strain (RVLS), moderately correlated with the right ventricle myocardial performance index (Tei index), weakly correlated with the transverse diameter of the right ventricle (RV) and the transverse diameter of the right atrium (RA), and moderately negatively correlated with right ventricular fractional area change (RVFAC). In terms of segments of the right ventricular free wall, the basal segment had the highest correlation coefficient with mPAP and PVR (r = 0.413, 0.523, 0.578, r = 0.421, 0.533, 0.575, p < 0.05, respectively). Tricuspid annular plane systolic excursion (TAPSE), main pulmonary artery diameter (MPA), peak systolic velocity of the right ventricle (RV-S'), and RA area parameters were not associated with mPAP and PVR (p > 0.05). Conclusions: Right ventricular longitudinal strain is a reliable indicator to evaluate right ventricular function in pediatric patients with PH. It can provide valuable reference information for the clinical judgment of the status and severity of the disease in children.

6.
Front Pediatr ; 11: 1259753, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37859771

RESUMEN

Objective: To determine the reasons why pulmonary hypertension (PH) children refused vaccination against COVID-19, evaluate the safety and efficacy of COVID-19 vaccine in PH children. Study design: This retrospective cohort study included congenital heart disease-associated pulmonary arterial hypertension (CHD-PAH) and bronchopulmonary dysplasia associated PH (BPD-PH) children who were divided into vaccinated group and non-vaccinated group. Univariate logistic regression analysis and multivariate logistic regression analysis were conducted to explore the reasons why PH children refused COVID-19 vaccine. Then, the prevalence, the number of symptoms, and the severity of COVID-19 disease were compared between the vaccinated and unvaccinated groups. Result: We included 73 children and 61 children (83.6%) were unvaccinated. The main reasons for not being vaccinated were fear of worsening of existing diseases (31%). Age < 36 months (RR: 0.012; P < 0.001) and the presence of comorbidities (RR = 0.06; P = 0.023) were risk factors influencing willingness to vaccinate. The most common adverse events (AEs) were injection site pain (29.6%). COVID-19 vaccines are safe for PH children. The prevalence of COVID-19 disease decreased in PH children after vaccination (RR = 0.51; P = 0.009). 1 month after negative nucleic acid test or negative antigen test, PH children in the vaccinated group had fewer symptoms (P = 0.049). Conclusions: The vaccination rate of COVID-19 vaccine is low in CHD-PAH and BPD-PH children while COVID-19 vaccines are safe. Vaccination can reduce the prevalence of COVID-19 disease and the number of symptoms 1 month after negative nucleic acid or antigen tests.

7.
Epigenetics ; 18(1): 2242225, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37537976

RESUMEN

Idiopathic pulmonary arterial hypertension (IPAH) is a serious and fatal disease. Recently, m6A has been reported to play an important role in the lungs of IPAH patients and experimental pulmonary hypertension models. However, the meaning of m6A mRNAs in the peripheral blood of IPAH patients remains largely unexplored. We aimed to construct a transcriptome-wide map of m6A mRNAs in the peripheral blood of IPAH patients. M6A RNA Methylation Quantification Kit was utilized to measure the total m6A levels in the peripheral blood of IPAH patients. A combination of MeRIP-seq, RNA-seq and bioinformatics analysis was utilized to select m6A-modified hub genes of IPAH. MeRIP-qPCR and RT-qPCR were used to measure the m6A levels and mRNA levels of TP53, RPS27A, SMAD3 and FoxO3 in IPAH patients. Western blot was performed to assess the protein levels of m6A related regulators and m6A related genes in experimental PH animal models, hypoxia-treated and PDGF-BB induced PASMCs. We found that the total m6A levels were increased in peripheral blood of IPAH patients and verified that m6A levels of RPS27A and SMAD3 were significantly elevated and m6A levels of TP53 and FoxO3 were significantly reduced. The mRNA or protein levels of RPS27A, SMAD3, TP53 and FoxO3 were changed in human blood samples, experimental PH animal models and PDGF-BB induced PASMCs. Moreover, METTL3 and YTHDF1 were increased in the hypoxia induced pulmonary hypertension rat model, hypoxia-treated and PDGF-BB induced PASMCs. These finding suggested that m6A may play an important role in IPAH.


Asunto(s)
Hipertensión Pulmonar , Humanos , Ratas , Animales , Hipertensión Pulmonar Primaria Familiar/genética , Hipertensión Pulmonar Primaria Familiar/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Becaplermina/genética , Becaplermina/metabolismo , Arteria Pulmonar/metabolismo , Epigenoma , Proliferación Celular , Miocitos del Músculo Liso/metabolismo , Metilación de ADN , ARN Mensajero/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
9.
Am J Physiol Endocrinol Metab ; 324(4): E330-E338, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856188

RESUMEN

Lactate, which is an end product of glycolysis, has traditionally been considered a metabolic waste. However, numerous studies have demonstrated that lactate serves metabolic and nonmetabolic functions in physiological processes and multiple diseases. Cancer and pulmonary arterial hypertension have been shown to undergo metabolic reprogramming, which is accompanied by increased lactate production. Metabolic reprogramming and epigenetic modifications have been extensively linked; furthermore, posttranslational modifications of histones caused by metabolites play a vital role in epigenetic alterations. In this paper, we reviewed recent research on lactate-induced histone modifications and provided a new vision about the metabolic effect of glycolysis. Based on our review, the cross talk between the metabolome and epigenome induced by glycolysis may indicate novel epigenetic regulatory and therapeutic opportunities. There is a magnificent progress in the interaction between metabolomics and epigenomics in recent decades, but many questions still remained to be investigated. Lactylation is found in different pathophysiological states and leads to diverse biological effects; however, only a few mechanisms of lactylation have been illustrated. Further research on lactylation would provide us with a better understanding of the cross talk between metabolomics and epigenomics.


Asunto(s)
Epigenómica , Neoplasias , Humanos , Histonas/metabolismo , Epigénesis Genética , Ácido Láctico
10.
Mol Med Rep ; 27(3)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36734266

RESUMEN

Pulmonary arterial hypertension (PAH), a fatal disease with an insidious onset and rapid progression, shows characteristics such as increases in pulmonary circulatory resistance and pulmonary arterial pressure, and progressive right heart failure. Shikonin can reduce right ventricular systolic pressure in chronically hypoxic mice. However, the mechanisms underlying the protective effect of shikonin against PAH pathogenesis have only been sporadically identified. The present study evaluated whether inhibiting the expression of pyruvate kinase M2 (PKM2) contributed to the improvement of pulmonary vascular remodeling in PAH rats induced by monocrotaline (MCT) treatment. Hemodynamic parameters were assessed using echocardiography and right ventricular catheterization. Right ventricular hypertrophy index analysis and hematoxylin and eosin staining were used to evaluate the degree of pulmonary vascular and right heart remodeling. Moreover, PKM2, p­PKM2, ERK, p­ERK, glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA) protein expression levels were semi­quantified using western blotting. The expression and distribution of PKM2 were assessed using immunofluorescence microscopy. The present study demonstrated that MCT treatment caused pulmonary arterial hypertension and pulmonary vascular remodeling in experimental rats. Shikonin improved hemodynamics and pulmonary vascular remodeling in MCT­induced PAH rats, decreased aerobic glycolysis and downregulated PKM2, p­PKM2, p­ERK, GLUT 1 and LDHA protein expression levels. Shikonin improved experimental pulmonary arterial hypertension hemodynamics and pulmonary vascular remodeling at least partly through the inhibition of PKM2 and the resultant suppression of aerobic glycolysis. These results provide a novel understanding of possible new treatment targets for PAH.


Asunto(s)
Hipertensión Arterial Pulmonar , Piruvato Quinasa , Animales , Ratas , Modelos Animales de Enfermedad , Monocrotalina/efectos adversos , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas Sprague-Dawley , Remodelación Vascular , Piruvato Quinasa/genética
11.
Braz J Cardiovasc Surg ; 37(4): 554-565, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35976208

RESUMEN

INTRODUCTION: Pulmonary artery denervation (PADN) can reduce the sympathetic nervous system (SNS) activity, reduce pulmonary artery pressure (PAP), and improve the quality of life in patients with pulmonary hypertension (PH). We conducted a systematic meta-analysis of the effectiveness of PADN in the treatment of PH patients. METHODS: This is a comprehensive literature search including all public clinical trials investigating the effects of PADN on PH. Outcomes were mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), cardiac output (CO), right ventricular (RV) Tei index, 6-minute walk distance (6MWD), and New York Heart Association (NYHA) cardiac function grading. RESULTS: A total of eight clinical studies with 213 PH patients who underwent PADN were included. Meta-analysis showed that after PADN, mPAP (mean difference [] -12.51, 95% confidence interval [CI] -17.74 to -7.27, P<0.00001) (mmHg) and PVR ( -5.17, 95% CI -7.70 to -2.65, P<0.0001) (Wood unit) decreased significantly, CO ( 0.59, 95% CI 0.32 to 0.86, P<0.0001) (L/min) and 6MWD ( 107.75, 95% CI 65.64 to 149.86, P<0.00001) (meter) increased significantly, and RV Tei index ( -0.05, 95% CI -0.28 to 0.17, P=0.63) did not change significantly. Also after PADN, the proportion of NYHA cardiac function grading (risk ratio 0.23, 95% CI 0.14 to 0.37, P<0.00001) III and IV decreased significantly. CONCLUSION: This meta-analysis supports PADN as a potential new treatment for PH. Further high-quality randomized controlled studies are needed.


Asunto(s)
Hipertensión Pulmonar , Arteria Pulmonar , Desnervación , Humanos , Hipertensión Pulmonar/cirugía , Arteria Pulmonar/cirugía , Calidad de Vida , Resistencia Vascular
12.
Rev. bras. cir. cardiovasc ; 37(4): 554-565, Jul.-Aug. 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1394719

RESUMEN

ABSTRACT Introduction: Pulmonary artery denervation (PADN) can reduce the sympathetic nervous system (SNS) activity, reduce pulmonary artery pressure (PAP), and improve the quality of life in patients with pulmonary hypertension (PH). We conducted a systematic meta-analysis of the effectiveness of PADN in the treatment of PH patients. Methods: This is a comprehensive literature search including all public clinical trials investigating the effects of PADN on PH. Outcomes were mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), cardiac output (CO), right ventricular (RV) Tei index, 6-minute walk distance (6MWD), and New York Heart Association (NYHA) cardiac function grading. Results: A total of eight clinical studies with 213 PH patients who underwent PADN were included. Meta-analysis showed that after PADN, mPAP (mean difference [MD] -12.51, 95% confidence interval [CI] -17.74 to -7.27, P<0.00001) (mmHg) and PVR (MD -5.17, 95% CI -7.70 to -2.65, P<0.0001) (Wood unit) decreased significantly, CO (MD 0.59, 95% CI 0.32 to 0.86, P<0.0001) (L/min) and 6MWD (MD 107.75, 95% CI 65.64 to 149.86, P<0.00001) (meter) increased significantly, and RV Tei index (MD -0.05, 95% CI -0.28 to 0.17, P=0.63) did not change significantly. Also after PADN, the proportion of NYHA cardiac function grading (risk ratio 0.23, 95% CI 0.14 to 0.37, P<0.00001) III and IV decreased significantly. Conclusion: This meta-analysis supports PADN as a potential new treatment for PH. Further high-quality randomized controlled studies are needed.

13.
Front Pediatr ; 10: 922464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813391

RESUMEN

Multifocal atrial tachycardia (MAT) is defined as irregular P-P, R-R, and P-R intervals, isoelectric baseline between P waves, and ventricular rate over 100 beats/min. Although the prognosis of pediatric MAT in most patients is favorable, adverse outcomes of MAT have been reported, such as cardiogenic death (3%), respiratory failure (6%), or persistent arrhythmia (7%), due to delayed diagnosis and poorly controlled MAT. Previous studies demonstrated that pediatric MAT is associated with multiple enhanced automatic lesions located in the atrium or abnormal automaticity of a single lesion located in the pulmonary veins via multiple pathways to trigger electrical activity. Recent studies indicated that pediatric MAT is associated with the formation of a re-entry loop, abnormal automaticity, and triggering activity. The occurrence of pediatric MAT is affected by gestational disease, congenital heart disease, post-cardiac surgery, pulmonary hypertension, and infectious diseases, which promote MAT via inflammation, redistribution of the autonomic nervous system, and abnormal ion channels. However, the pathogenesis of MAT needs to be explored. This review is aimed to summarize and analyze the pathogenesis in pediatric MAT.

14.
Cytokine ; 152: 155812, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35180562

RESUMEN

OBJECTIVE: The purpose of this design was to explore the specific role and related mechanism of long noncoding RNA (lncRNA) regulators of reprogramming (ROR) in viral myocarditis (VMC). METHODS: AC16 cells were infected with coxsackievirus B3 (CVB3) to establish a VMC cell model in vitro. The release of interleukin (IL)-1ß and IL-18 was evaluated by enzyme-linked immunosorbent assay (ELISA). Gene expression was calculated using quantitative real-time (qRT)-PCR. Cell pyroptosis was determined by flow cytometry and Western blot assays. Cell counting Kit-8 (CCK-8) detected cell viability. The molecular associations were verified by employing RNA immunoprecipitation (RIP), RNA pulldown and chromatin immunoprecipitation (ChIP) assays. RESULTS: The lncRNA ROR was more highly expressed in CVB3 virus-infected AC16 cells than in controls. Knockdown of ROR markedly rescued cell viability and reduced the release of IL-1ß and IL-18, cell pyroptosis and pyroptotic proteins such as NLRP3, ASC and cleaved caspase 1. Mechanistically, ROR destroyed the mRNA stability of Forkhead Box P Factor 1 (FOXP1) by binding polypyrimidine tract binding protein 1 (PTBP1). FOXP1 repressed the transcription of NLRP3 by directly interacting with its promoter. Importantly, coinhibition of FOXP1 impeded the protective role of ROR silencing in CVB3-infected AC16 cells. CONCLUSION: In conclusion, these findings elucidated that ROR knockdown inhibited CVB3-induced cardiomyocyte inflammation and NLRP3-mediated pyroptosis by regulating the PTBP1/FOXP1 axis, implying that ROR might be a new inducer in CVB3-infected VMC.


Asunto(s)
Miocarditis , ARN Largo no Codificante , Factores de Transcripción Forkhead/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Interleucina-18/metabolismo , Miocarditis/metabolismo , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína de Unión al Tracto de Polipirimidina/genética , Piroptosis/genética , ARN Largo no Codificante/genética , Proteínas Represoras/metabolismo
15.
Cardiol J ; 29(3): 381-387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33438182

RESUMEN

Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease characterized by increased pulmonary arterial pressure and pulmonary arterioles remodeling. Some studies have discovered the relationship between sympathetic nerves (SNs) and pathogenesis of PAH. This review is aimed to illustrate the location and components of SNs in the pulmonary artery, along with different methods and effects of pulmonary artery denervation (PADN). Studies have shown that the SNs distributed mainly around the main pulmonary artery and pulmonary artery bifurcation. And the SNs could be destroyed by three ways: the chemical way, the surgical way and the catheter-based way. PADN can significantly decrease pulmonary arterial pressure rapidly, improve hemodynamic varieties, and then palliate PAH. PADN has been recognized as a prospective and effective therapy for PAH patients, especially for those with medication-refractory PAH. However, further enlarged clinical studies are needed to confirm accurate distribution of SNs in the pulmonary artery and the efficacy of PADN.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Estudios Prospectivos , Arteria Pulmonar/cirugía , Simpatectomía/efectos adversos
16.
Front Cardiovasc Med ; 9: 1058569, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698945

RESUMEN

Hyperuricemia, pulmonary hypertension, and renal failure in infancy and alkalosis syndrome (HUPRA syndrome) is an ultrarare mitochondrial disease that is characterized by hyperuricemia, pulmonary hypertension, renal failure, and alkalosis. Seryl-tRNA synthetase 2 (SARS2) gene variants are believed to cause HUPRA syndrome, and these variants result in the loss of function of seryl-tRNA synthetase. Eventually, mutated seryl-tRNA synthetase is unable to catalyze tRNA synthesis and leads to the inhibition of the biosynthesis of mitochondrial proteins. This causes oxidative phosphorylation (OXPHOS) system impairments. To date, five mutation sites in the SARS2 gene have been identified. We used whole-exome sequencing and Sanger sequencing to find and validate a novel compound heterozygous variants of SARS2 [c.1205G>A (p.Arg402His) and c.680G>A (p.Arg227Gln)], and in silico analysis to analyze the structural change of the variants. We found that both variants were not sufficient to cause obvious structural damage but changed the intermolecular bond of the protein, which could be the cause of HUPRA syndrome in this case. We also performed the literature review and found this patient had significant pulmonary hypertension and minor renal dysfunction compared with other reported cases. This study inspired us to recognize HUPRA syndrome and broaden our knowledge of gene variation in PH.

17.
Front Pediatr ; 10: 1027177, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699290

RESUMEN

Introduction: The aim of the present study is to report the diagnosis and treatment of a rare case of frequent torsades de pointes (Tdp) in a child with a novel AKAP9 mutation. A 13-year-old girl suffered from repeated syncope and frequent Tdp. An electrocardiogram (ECG) showed frequent multisource premature ventricular contractions with the R-ON-T phenomenon. The QTc ranged from 410 to 468 ms. The genetic test indicated a heterozygous mutation, namely, c.11714T > C (p.M3905T), in the AKAP9 gene, which is a controversial gene in long QT syndrome. After treatment with propranolol, recurrent syncope occurred, and the patient received an implantable cardioverter defibrillator (ICD). Due to frequent electrical storms at home, the child was additionally treated with propafenone to prevent arrhythmia. The antitachycardia pacing (ATP) function in the ICD was turned off, and the threshold of ventricular tachycardia (VT) assessment was adjusted from 180 beats/min to 200 beats/min. The patient was followed up for 12 months without malignant arrhythmia and electric shock. Conclusion: Genetic testing may be a useful tool to determine the origin of channelopathy, but the results should be interpreted in combination with the actual situation. Rational parameter settings for the ICD and application of antiarrhythmic drugs can reduce the mortality rates of children.

18.
J Cardiothorac Surg ; 16(1): 229, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380540

RESUMEN

BACKGROUND: The 3D printing technology in congenital cardiac surgery has been widely utilized to improve patients' understanding of their disease. However, there has been no randomized controlled study on its usefulness in surgical consent for congenital heart disease repair. METHODS: A randomized controlled study was performed during consent process in which guardians of candidates for ventricular septal defect repair were given detailed explanation of the anatomy, indication for surgery and potential complication and risks using 3D print ventricular septal defect model (n = 20) versus a conventional 2D diagram (n = 20). A questionnaire was finished by each guardian of the patients. Data collected from questionnaires as well as medical records were statistically analyzed. RESULTS: Statistically significant improvements in ratings of understanding of ventricular septal defect anatomy (p = 0.02), and of the surgical procedure and potential complications (p = 0.02) were noted in the group that used the 3D model, though there was no difference in overall ratings of the consent process (p = 0.09). There was no difference in questionnaire score between subjects with different education levels. The clinical outcomes, as represented by the duration of intensive care unit stay, intubation duration was comparable between the two groups. CONCLUSIONS: The results indicated that it was an effective tool which may be used to consent for congenital heart surgery. Different education levels do not affect guardians' understanding in consent. The impact of 3D printing used in this scenario on long term outcomes remains to be defined.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Formularios de Consentimiento , Defectos del Tabique Interventricular , Consentimiento Informado , Impresión Tridimensional , Adulto , Recursos Audiovisuales , Preescolar , Comunicación , Femenino , Defectos del Tabique Interventricular/cirugía , Humanos , Lactante , Tutores Legales , Masculino , Modelos Anatómicos , Modelación Específica para el Paciente , Periodo Preoperatorio , Encuestas y Cuestionarios
19.
Aging (Albany NY) ; 13(14): 18238-18256, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34310344

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) modification is one of the most common chemical modifications of eukaryotic mRNAs, which play an important role in tumors and cardiovascular disease through regulating mRNA stability, splicing and translation. However, the changes of m6A mRNA and m6A-related enzymes in pulmonary arterial hypertension (PAH) remain largely unexplored. METHODS: MeRIP-seq was used to identify m6A methylation in lung tissues from control and MCT-PAH rats. Western blot and immunofluorescence were used to evaluate expression of m6A-related enzymes. RESULTS: Compared with control group, m6A methylation was mainly increased in lung tissues from MCT-PAH rats. The up-methylated coding genes in MCT-PAH rats were primarily enriched in processes associated with inflammation, glycolysis, ECM-receptor interaction and PDGF signal pathway, while genes with down-methylation were enriched in processes associated with TGF-ß family receptor members. The expression of FTO and ALKBH5 downregulated, METTL3 and YTHDF1 increased and other methylation modification-related proteins was not significantly changed in MCT-PAH rats lung tissues. Immunofluorescence indicated that expression of FTO decreased and YTHDF1 increased in small pulmonary arteries of MCT-PAH rats. CONCLUSION: m6A levels and the expression of methylation-related enzymes were altered in PAH rats, in which FTO and YTHDF1 may play a crucial role in m6A modification.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Metiltransferasas/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Regulación hacia Abajo , Técnica del Anticuerpo Fluorescente , Masculino , Metilación , Monocrotalina/toxicidad , Hipertensión Arterial Pulmonar/inducido químicamente , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
20.
Front Pharmacol ; 12: 663551, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935785

RESUMEN

Luteolin is a flavonoid compound with a variety of pharmacological effects. In this study, we explored the effects of luteolin on monocrotaline (MCT) induced rat pulmonary arterial hypertension (PAH) and underlying mechanisms. A rat PAH model was generated through MCT injection. In this model, luteolin improved pulmonary vascular remodeling and right ventricular hypertrophy, meanwhile, luteolin could inhibit the proliferation and migration of pulmonary artery smooth muscle cells induced by platelet-derived growth factor-BB (PDGF-BB) in a dose-dependent manner. Moreover, our results showed that luteolin could downregulate the expression of LATS1 and YAP, decrease YAP nuclear localization, reduce the expression of PI3K, and thereby restrain the phosphorylation of AKT induced by PDGF-BB. In conclusion, luteolin ameliorated experimental PAH, which was at least partly mediated through suppressing HIPPO-YAP/PI3K/AKT signaling pathway. Therefore, luteolin might become a promising candidate for treatment of PAH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...