Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Aging (Albany NY) ; 16(2): 1581-1604, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38240702

RESUMEN

Basement membrane plays an important role in tumor invasion and metastasis, which is closely related to prognosis. However, the prognostic value and biology of basement membrane genes (BMGs) in prostate cancer (PCa) remain unknown. In the TCGA training set, we used differentially expressed gene analysis, protein-protein interaction networks, univariate and multivariate Cox regression, and least absolute shrinkage and selection operator regression to construct a basement membrane-related risk model (BMRM) and validated its effectiveness in the MSKCC validation set. Furthermore, the accurate nomogram was constructed to improve clinical applicability. Patients with PCa were divided into high-risk and low-risk groups according to the optimal cut-off value of the basement membrane-related risk score (BMRS). It was found that BMRS was significantly associated with RFS, T-stage, Gleason score, and tumor microenvironmental characteristics in PCa patients. Further analysis showed that the model grouping was closely related to tumor immune microenvironment characteristics, immune checkpoint inhibitors, and chemotherapeutic drug sensitivity. In this study, we developed a new BMGs-based prognostic model to determine the prognostic value of BMGs in PCa. Finally, we confirmed that THBS2, a key gene in BMRM, may be an important link in the occurrence and progression of PCa. This study provides a novel perspective to assess the prognosis of PCa patients and provides clues for the selection of future personalized treatment regimens.


Asunto(s)
Neoplasias de la Próstata , Microambiente Tumoral , Masculino , Humanos , Membrana Basal , Microambiente Tumoral/genética , Pronóstico , Neoplasias de la Próstata/genética , Nomogramas
2.
Fluids Barriers CNS ; 20(1): 1, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624478

RESUMEN

BACKGROUND: Our previous study demonstrated that M1 macrophages could impair tight junctions (TJs) between vascular endothelial cells by secreting interleukin-6 (IL-6) after spinal cord injury (SCI). Tocilizumab, as a humanized IL-6 receptor (IL-6R) monoclonal antibody approved for the clinic, has been applied in the treatment of neurological diseases in recent years, but the treatment effect of Tocilizumab on the TJs restoration of the blood-spinal cord barrier (BSCB) after SCI remains unclear. This study aimed to explore the effect of Tocilizumab on the restoration of TJs between vascular endothelial cells and axon regeneration after SCI. METHODS: In this study, the mouse complete spinal cord crush injury model was used, and Tocilizumab was continuously injected intrathecally until the day of sample collection. A PBS injection in the same location was included as a control. At 14 days postinjury (dpi) and 28 dpi, spinal cord tissue sections were examined via tissue immunofluorescence. The Basso Mouse Scale (BMS) scores and footprint analysis were used to verify the effect of Tocilizumab on the recovery of motor function in mice after SCI. RESULTS: We demonstrated that depletion of macrophages has no effect on axon regeneration and motor functional recovery after SCI, but mice subjected to Tocilizumab showed a significant increase in axon regeneration and a better recovery in motor function during the chronic phase after SCI. Moreover, our study demonstrated that at 14 and 28 dpi, the expression of claudin-5 (CLDN5) and zonula occludens-1 (ZO-1) between vascular endothelial cells was significantly increased and the leakage of BSCB was significantly reduced in the injured core after daily intrathecal injection of Tocilizumab. Notably, the infiltration of CD68+ macrophages/microglia and the formation of fibrotic scar were decreased in the injured core after Tocilizumab treatment. Tocilizumab treatment could effectively reduce the IL-6 expression in macrophages in the injured core. CONCLUSION: The application of Tocilizumab to antagonize IL-6R can effectively reduce the expression of IL-6 in macrophages and facilitate TJs restoration of the BSCB, which is beneficial for axon regeneration and motor functional recovery after SCI. Hence, Tocilizumab treatment is a potential therapeutic strategy for SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Uniones Estrechas , Ratones , Animales , Uniones Estrechas/metabolismo , Axones/metabolismo , Células Endoteliales/metabolismo , Interleucina-6/farmacología , Regeneración Nerviosa , Traumatismos de la Médula Espinal/metabolismo
4.
Sci Rep ; 12(1): 13424, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927571

RESUMEN

The angle and position of the scapular glenoid are important in shoulder mechanics, the interpretation of diseases, and planning shoulder replacement surgery. In total shoulder replacement, understanding the bony parameters of the glenoid is also of considerable guiding significance for designing implant size and improving material adaptability. To compare glenoid parameters measured from skeletal scapula specimens with those measured by 3D modeling of CT scanning images, analyze correlations between these data, and draw conclusions to guide clinical treatment of shoulder joint injury and total shoulder joint replacement. The data of manual and CT measurements from the same Chinese dry glenoid was compared. Three-dimensional measurement data were collected from the Japanese population and compared with the Chinese population data generated in this study. There were no significant differences between manual measurement and CT measurement in the inclination angle, glenopolar angle, anteroposterior transverse diameter, upper to lower vertical diameter, and depth of the glenoid (P = 0.288, 0.524, 0.111, 0.194, and 0.055, respectively). Further, there were no significant differences between Japanese and Chinese glenoid bones in the upper and lower vertical diameters or anteroposterior transverse diameters (P > 0.05). There were no significant differences between CT and manual measurements, suggesting that the CT method may provide measurements very close to the actual specimen size. This result, however, indicated that the measurer should be careful when measuring the depth of the glenoid.


Asunto(s)
Artroplastía de Reemplazo de Hombro , Cavidad Glenoidea , Lesiones del Hombro , Articulación del Hombro , Artroplastía de Reemplazo de Hombro/métodos , Cavidad Glenoidea/diagnóstico por imagen , Cavidad Glenoidea/cirugía , Humanos , Imagenología Tridimensional , Escápula/diagnóstico por imagen , Articulación del Hombro/diagnóstico por imagen , Articulación del Hombro/cirugía
5.
J Neuroinflammation ; 19(1): 95, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35429978

RESUMEN

BACKGROUND: Excessively deposited fibrotic scar after spinal cord injury (SCI) inhibits axon regeneration. It has been reported that platelet-derived growth factor receptor beta (PDGFRß), as a marker of fibrotic scar-forming fibroblasts, can only be activated by platelet-derived growth factor (PDGF) B or PDGFD. However, whether the activation of the PDGFRß pathway can mediate fibrotic scar formation after SCI remains unclear. METHODS: A spinal cord compression injury mouse model was used. In situ injection of exogenous PDGFB or PDGFD in the spinal cord was used to specifically activate the PDGFRß pathway in the uninjured spinal cord, while intrathecal injection of SU16f was used to specifically block the PDGFRß pathway in the uninjured or injured spinal cord. Immunofluorescence staining was performed to explore the distributions and cell sources of PDGFB and PDGFD, and to evaluate astrocytic scar, fibrotic scar, inflammatory cells and axon regeneration after SCI. Basso Mouse Scale (BMS) and footprint analysis were performed to evaluate locomotor function recovery after SCI. RESULTS: We found that the expression of PDGFD and PDGFB increased successively after SCI, and PDGFB was mainly secreted by astrocytes, while PDGFD was mainly secreted by macrophages/microglia and fibroblasts. In addition, in situ injection of exogenous PDGFB or PDGFD can lead to fibrosis in the uninjured spinal cord, while this profibrotic effect could be specifically blocked by the PDGFRß inhibitor SU16f. We then treated the mice after SCI with SU16f and found the reduction of fibrotic scar, the interruption of scar boundary and the inhibition of lesion and inflammation, which promoted axon regeneration and locomotor function recovery after SCI. CONCLUSIONS: Our study demonstrates that activation of PDGFRß pathway can directly induce fibrotic scar formation, and specific blocking of this pathway would contribute to the treatment of SCI.


Asunto(s)
Axones , Cicatriz , Indoles , Regeneración Nerviosa , Pirroles , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Traumatismos de la Médula Espinal , Animales , Axones/efectos de los fármacos , Axones/patología , Cicatriz/tratamiento farmacológico , Cicatriz/etiología , Cicatriz/metabolismo , Cicatriz/patología , Fibrosis , Indoles/farmacología , Locomoción , Ratones , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Proteínas Proto-Oncogénicas c-sis/metabolismo , Pirroles/farmacología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/antagonistas & inhibidores , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Recuperación de la Función , Médula Espinal/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
6.
Orthop J Sports Med ; 9(11): 23259671211047269, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34820459

RESUMEN

BACKGROUND: The anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) contribute greatly to the overall stability of the ankle joint; however, ATFL and combined ATFL-CFL sprains are common. Anatomic reconstruction of the lateral collateral ligament with grafts has been proposed for patients with poor tissue quality or inadequate local tissue. Anatomic reconstruction of the lateral ankle ligaments requires a good understanding of their anatomic location. PURPOSE: To describe the anatomy of the ATFL and CFL ligaments quantitatively and qualitatively and explore the relationship of some morphological parameters. STUDY DESIGN: Descriptive laboratory study. METHODS: A total of 66 adult ankle specimens were analyzed for ATFL band type, origin, length, width, thickness, and angle between the ATFL and CFL, and 73 adult ankle specimens were used for measuring the origin of the CFL. The coefficient of variation was used to describe and compare the respective variability of angle, length, width, and thickness. The origin of the ATFL was labeled as point A, and the leading edge of the CFL intersection with the articular surface of the calcaneus was considered point B. RESULTS: The ATFL had a variable number of bands. A high degree of variability (coefficient of variation >0.2) was seen for most morphological measurements of the ATFL. In addition, the length of distance AB also varied. The CFL originated at the tip of the fibula in only 9% of specimens. It was found more commonly at the anterior border of the lateral malleolus (4.94 ± 1.70 mm from the tip). The angle between the ATFL and CFL was consistent at 100° to 105º. CONCLUSION: A fair amount of variability of ATFL length, width, and thickness were found in our study, with less variability in the ATFL-CFL angle. Most CFLs attached anterior to the tip of the fibula. CLINICAL RELEVANCE: Providing relevant anatomic data of ATFL and CFL is important in ensuring proper surgical treatment of ankle joint injuries.

7.
Front Cell Dev Biol ; 9: 678967, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249931

RESUMEN

BACKGROUND: SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily C member 1 (SMARCC1) protein is a potential tumor suppressor in various cancers. However, its role in prostate cancer (PCa) remains controversial. The aim of this study was to determine the biological function of SMARCC1 in PCa and explore the underlying regulatory mechanisms. METHODS: The expression of SMARCC1 was validated in PCa tissues by immunohistochemistry. Meanwhile, function experiments were used to evaluate the regulatory role on cell proliferation and metastasis in PCa cells with SMARCC1 depletion both in vitro and in vivo. The expression levels of relevant proteins were detected by Western blotting. RESULTS: Our finding showed that SMARCC1 was significantly downregulated in prostate adenocarcinoma, with a higher Gleason score (GS) than that in low GS. The decreased expression of SMARCC1 was significantly correlated with a higher GS and poor prognosis. Additionally, we found that silencing of SMARCC1 dramatically accelerated cell proliferation by promoting cell cycle progression and enhancing cell migration by inducing epithelial mesenchymal transition (EMT). Furthermore, depletion of SMARCC1 facilitated PCa xenograft growth and lung metastasis in murine models. Mechanistically, the loss of SMARCC1 activated the PI3K/AKT pathway in PCa cells. CONCLUSION: SMARCC1 suppresses PCa cell proliferation and metastasis via the PI3K/AKT signaling pathway and is a novel therapeutic target.

8.
Front Aging Neurosci ; 13: 784665, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087392

RESUMEN

The loss of parvalbumin-positive (PV+) neurons in the substantia nigra pars reticulata (SNR) was observed in patients with end-stage Parkinson's disease (PD) and our previously constructed old-aged Pitx3-A53Tα-Syn × Tau-/- triple transgenic mice model of PD. The aim of this study was to examine the progress of PV+ neurons loss. We demonstrated that, as compared with non-transgenic (nTg) mice, the accumulation of α-synuclein in the SNR of aged Pitx3-A53Tα-Syn × Tau-/- mice was increased obviously, which was accompanied by the considerable degeneration of PV+ neurons and the massive generation of apoptotic NeuN+TUNEL+ co-staining neurons. Interestingly, PV was not costained with TUNEL, a marker of apoptosis. PV+ neurons in the SNR may undergo a transitional stage from decreased expression of PV to increased expression of NeuN and then to TUNEL expression. In addition, the degeneration of PV+ neurons and the expression of NeuN were rarely observed in the SNR of nTg and the other triple transgenic mice. Hence, we propose that Tau knockout and α-syn A53T synergy modulate PV+ neurons degeneration staging in the SNR of aged PD-liked mice model, and NeuN may be suited for an indicator that suggests degeneration of SNR PV+ neurons. However, the molecular mechanism needs to be further investigated.

9.
Spine (Phila Pa 1976) ; 46(22): 1542-1550, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32049938

RESUMEN

STUDY DESIGN: A retrospective study. OBJECTIVE: Investigate the diagnosis and surgery strategy for treatment of development spinal canal stenosis (DSSA) at atlas plane based on computerized tography (CT) image characters. SUMMARY OF BACKGROUND DATA: The occurrence of spinal canal stenosis in the atlas plane is relatively rare compared with lower cervical. METHODS: Fifteen patients diagnosed with DSSA were included from 2014 to 2018. They are divided into four subgroups based on the character of CT images: group I (small size atlas), group II (hypertrophy of posterior arch of the atlas [PAA]), group III (incurved of PAA), and group IV (hypertrophy odontoid). RESULTS: There are type I 7, type II 3, type III 2, and group IV 3 in the 15 cases. All the patients received different surgery procedures respectively: (1) posterior arch osteotomy were performed for group I/III//IV without atlantoaxial dislocation, (2) posterior arch resect and replantation were performed for group II, (3) occipital cervical fixation and fusion were added to the patients with associated atlantoaxial dislocation (AAD), (4) a new method of odontoid reduce and atlantoaxial fixation by transoral approach were performed for group IV with associated AAD. All cases underwent surgery successfully which included posterior occipitocervical fixation (OCF) + posterior arch resection (PAR) eight cases, PAR four cases, posterior arch remodeling and re-implantation (PARR) two cases, and Dens remodeling + trans-oral anterior reduction and plate fixation (DR+TARP) one case without severe complications. All patients show different improvement in the symptoms. Japanese orthopaedic association score improved from 9.2 to 14.7 in 1 year follow-up. CONCLUSION: DSSA could be easily diagnosed and divided into four subgroups according to the character of CT image, corresponding surgery strategy could receive a fine clinical result.Level of Evidence: 4.


Asunto(s)
Articulación Atlantoaxoidea , Atlas Cervical , Luxaciones Articulares , Fusión Vertebral , Atlas Cervical/diagnóstico por imagen , Atlas Cervical/cirugía , Constricción Patológica , Humanos , Estudios Retrospectivos , Canal Medular , Resultado del Tratamiento
10.
FEBS Open Bio ; 9(10): 1798-1807, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31410981

RESUMEN

Prostate cancer (PCa) remains the second leading cause of cancer-related death among men in the United States, and its molecular mechanism remains to be elucidated. Recent studies have suggested that microRNAs may play an important role in cancer development and progression. By analyzing the Gene Expression Omnibus dataset, we found lower expression for miR-488 in PCa than in normal tissues. Moreover, CCK-8, EdU, glucose uptake, and lactate secrete assays revealed that overexpression of miR-488 in PCa cell lines PC3 and DU145 resulted in inhibition of proliferation and glycolysis. In contrast, downregulation of miR-488 expression promoted proliferation and glycolysis in PCa cells. Using a bioinformatic approach and dual-luciferase reporter assays, we identified 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, isoform3 (PFKFB3), as a direct target of miR-488. Inhibition of PFKFB3 also suppressed PCa cell glycolysis and proliferation. Our study suggests that miR-488 inhibits PCa cell proliferation and glycolysis by targeting PFKFB3, and thus, miR-488 may be a novel therapeutic candidate for PCa.


Asunto(s)
Glucólisis/genética , MicroARNs/genética , Fosfofructoquinasa-2/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo , Humanos , Masculino , MicroARNs/metabolismo , Fosfofructoquinasa-2/antagonistas & inhibidores , Neoplasias de la Próstata/genética , Células Tumorales Cultivadas
11.
Cancer Lett ; 418: 211-220, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29331421

RESUMEN

Hyperglycaemia promotes the development of Prostate cancer (PCa). However, the roles of miRNAs in this disease process and the underlying mechanisms are largely unknown. In this study, we recruited 391 PCa patients in China and found that PCa patients with high level blood glucose (≥100 mg/dL) trended to have high Gleason score (GS ≥ 7). miRNA-301a levels were significantly higher in prostate cancer than that in normal prostate tissues. Hyperglycaemia or high glucose treatment induced miR-301a expression in prostate tissues or PCa cell lines. miR-301a suppressed the expression of p21 and Smad4, and subsequently promoted G1/S cell cycle transition and cell proliferation in vitro and xenograft growth in nude mice in vivo. Furthermore, knockdown of p21 and Smad4 mimicked the effects of miR-301a overexpression. Restoration of p21 and smad4 could interrupt the effects of miR-301a overexpression. Importantly, inhibition of miR-301a severely blocked high glucose-induced PCa cell growth both in vitro and in vivo. These results revealed a novel molecular link between hyperglycaemia and PCa. The miR-301a plays an important role in the hyperglycaemia-associated cancer growth, and represents a novel therapeutic target for PCa.


Asunto(s)
Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Próstata/genética , Proteína Smad4/genética , Animales , Glucemia/metabolismo , Línea Celular , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Hiperglucemia/sangre , Hiperglucemia/fisiopatología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteína Smad4/metabolismo , Trasplante Heterólogo
12.
Sci Rep ; 7(1): 344, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28336939

RESUMEN

It is difficult for anatomists to dissect the human cardiac conduction system (CCS) on specimens as well as for cardiovascular clinicians to locate the CCS during cardiac operations. Here, we demonstrate a new method for locating the CCS using a 3D model of its nutritious arteries. First, we perfused the coronary arteries with contrast material and then acquired a set of data of thin computer tomography (CT) scans. Then, we generated a 3D model of the coronary artery and distinguished the arteries that supply the CCS. We then located the CCS on the 3D model via its nutritious arteries and dissected the CCS. Finally, the structures that were dissected were removed for histological and immunofluorescent staining. The results of histological and immunofluorescence examination proved the structure to be the CCS. Thus, we successfully located the CCS using a 3D model of its nutritious arteries. We suggest that with this new method, cardiac surgeons can locate a patient's CCS during cardiac surgeries such as transcatheter aortic valve implantation (TAVI) or radiofrequency catheter ablation (RFCA).


Asunto(s)
Arterias/anatomía & histología , Sistema de Conducción Cardíaco/anatomía & histología , Modelos Cardiovasculares , Arterias/diagnóstico por imagen , Sistema de Conducción Cardíaco/diagnóstico por imagen , Histocitoquímica , Humanos , Imagenología Tridimensional , Imagen Óptica , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA