Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(33): 14940-14948, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105779

RESUMEN

Low concentrations of nitrate (NO3-) widely exist in wastewater, post-treated wastewater, and natural environments; its further disposal is a challenge but meaningful for its discharge goals. Electroreduction of NO3- is a promising method that allows to eliminate NO3- and even generate higher-value NH3. However, the massive side reaction of hydrogen evolution has raised great obstacles in the electroreduction of low concentrations of NO3-. Herein, we present an efficient electroreduction method for low or even ultralow concentrations of NO3- via NO3- self-enrichment and active hydrogen (H*) inducement on the Ce(IV)-Co3O4 cathode. The key mechanism is that the strong oxytropism of Ce(IV) in Co3O4 resulted in two changes in structures, including loose nanoporous structures with copious dual adsorption sites of Ce-Co showing strong self-enrichment of NO3- and abundant oxygen vacancies (Ovs) inducing substantial H*. Ultimately, the bifunctional role synergistically promoted the selective conversion of NH3 rather than H2. As a result, Ce(IV)-Co3O4 demonstrated a NO3- self-enrichment with a 4.3-fold up-adsorption, a 7.5-fold enhancement of NH3 Faradic efficiency, and a 93.1% diminution of energy consumption when compared to Co3O4, substantially exceeding other reported electroreduction cathodes for NO3- concentrations lower than 100 mg·L-1. This work provides an effective treatment method for low or even ultralow concentrations of NO3-.


Asunto(s)
Electrodos , Nitratos , Nitratos/química , Hidrógeno/química , Cerio/química
2.
J Colloid Interface Sci ; 668: 375-384, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38678892

RESUMEN

Urea electrolysis is an appealing topic for hydrogen production due to its ability to extract hydrogen at a lower potential. However, it is plagued by sluggish kinetics and noble-metal catalyst requirements. Herein, we developed nickel-iron-layered double hydroxide (NiFe-LDH) nanolayers with abundant oxygen vacancies (OV) via synergistically etching nickel foam with Fe3+ and Cl- ions, enabling the efficient conversion of urea into H2 and N2. The synthesized OV-NiFe-LDH exhibits a lower potential (1.30 vs. reversible hydrogen electrode, RHE) for achieving 10 mA cm-2 in the urea oxidation reaction (UOR), surpassing most recently reported Ni-based electrodes. OV provides favorable conductivity and a large surface area, which results in a 4.1-fold in electron transport and a 5.1-fold increase in catalyst reactive sites. Density Functional Theory (DFT) calculations indicate that OV can lower the adsorption energy of urea, and enhance the bonding strength of *CONHNH, giving rise to improved UOR. This study provides a viable path toward economical and efficient production of high-purity hydrogen.

3.
J Hazard Mater ; 470: 134274, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608587

RESUMEN

The sluggish kinetics of Fe2+ regeneration seriously hinders the performance of Fenton process. However, the conventional Fenton system excessively stifle hydrogen-producing reactions, ignoring the significance of active hydrogen (H*) in Fe3+ reduction. Herein, a strategy of H* modulation is developed by decorating molybdenum disulfide (MoS2) on a graphite felt (GF) cathode to boost Fe2+ regeneration in solar-driven electro-Fenton (SEF) process. With MoS2 regulation, moderately dispersed MoS2 on GF can serve as a bifunctional cathode, where the H* and hydrogen peroxide (H2O2) are simultaneously generated through H+ reduction and O2 reduction, respectively. The in-situ generated H2O2 can trigger Fenton reactions with Fe2+, while the H* with robust reducing potential can significantly expedite Fe3+ reduction, consequently enhancing the HO• production. Both DFT calculations and EPR experiments confirm that H* can be activated via MoS2 decoration. The results show that Fe2+ concentration in the MoS2 @GF-SEF system remains at 15.74 mg/L (56.21%) after 6 h, which is 17.89 times that of the GF-SEF system. Moreover, the HO• content and organics degradation rate in the MoS2 @GF-SEF are 3.61 and 5.30 times those of the GF-SEF, respectively. This study provides a practical cathode strategy of H* modulation to enhance HO• production and electro-Fenton process. ENVIRONMENTAL IMPLICATION: Boosting Fe2+ regeneration is of great value for the Electro-Fenton process. Herein, report a strategy to achieve this goal based on a MoS2 @GF cathode. Remarkably, the MoS2 @GF system exhibits exceptional efficiency for both various refractory organic compounds with environmentally hazardous effects and sterilization aspects, which can also work over a wide range of pH values (3-11). Specially, this system is driven only by solar energy. These characteristics make the electro-Fenton system more suitable for practical wastewater treatment.

4.
J Colloid Interface Sci ; 644: 509-518, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37019742

RESUMEN

Bismuth vanadate (BiVO4), as the potential and prospective photocatalyst, has been limited by the issue of poor separation and transfer of charge carrier for photoelectrocatalytic (PEC) water oxidation. Here, a significant increase of surface injection efficiency for BiVO4 is realized by the rationally designed Ni doped FeOOH (Ni:FeOOH) layer growing on BiVO4 photoanode (Ni:FeOOH/BiVO4), in which doped Ni2+ can induce partial-charge of FeOOH to serve as ultrafast transfer channel for hole transfer and transportation at the semiconductor/electrolyte interface. In addition, the Ni:FeOOH/BiVO4 shows the ηsurface value of 81.6 %, which is 3.28-fold and 1.47-fold of BiVO4 and FeOOH/BiVO4, respectively. The photocurrent density of Ni:FeOOH/BiVO4 is 4.21 mA cm-2 at 1.23 V vs. RHE, with the onset potential cathodically shifting 237 mV over BiVO4 and a long-term stability for suppressing surface charge recombination. The UPS and UV-Vis spectra have confirmed the type-II band alignment between Ni:FeOOH and BiVO4 for promoting carrier transfer. This facile and effective spin-coating method could deposit oxygen evolution catalysts (OECs) availably onto photoanodes with enhanced PEC water splitting.

5.
Environ Sci Technol ; 57(7): 2939-2948, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36763939

RESUMEN

As the primary source of nitrogen pollutants in domestic sewage, urine is also an alternative for H2 production via electrochemical processes. However, it suffers from sluggish kinetics and noble-metal catalyst requirement. Here, we report a non-precious ultrathin NiFe-layered double hydroxide catalyst for the remarkable conversion of urea into N2 and H2, which is in situ grown on a Ni foam via ultrasonic self-etching in Fe3+/ethylene glycol (EG). EG regulates the etching rate of Fe3+, resulting in an ultrathin nanosheet structure with the aid of ultrasonication. This structure dramatically promotes the dehydrogenation process via decreasing the nanolayer thickness from 120 to 3.4 nm and leads to a 4.8-fold increase in the generation of active sites. It exhibits record urea oxidation kinetics (390.8 mA·cm-2 at 1.5 V vs RHE) with excellent stability (120 h), which is 11.8 times better than that of commercial Pt/C catalyst (33.1 mA·cm-2). Tests with real urine at 20 mA cm-2 achieve 74% total nitrogen removal and 2853 µmol·h-1 of H2 production. This study provides an attractive landscape for producing H2 by consuming urine biowastes.


Asunto(s)
Contaminantes Ambientales , Ultrasonido , Urea , Cinética , Nitrógeno
6.
Environ Sci Pollut Res Int ; 29(58): 88256-88268, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35831648

RESUMEN

γ-Fe2O3 has an excellent low-temperature selective catalytic reduction (SCR) deNOx performance, but its resistance to alkaline earth metal calcium (Ca) is poor. In particular, the detailed mechanism of Ca poisoning on the γ-Fe2O3 catalyst at the atomic level is not clear. Hence, the density functional theory method was used in this research to investigate the influence mechanism of Ca poisoning on the NH3-SCR over the γ-Fe2O3 catalyst surface. The findings reveal that NH3, NO, and O2 molecules can bind to the γ-Fe2O3 (001) surface to generate coordinated ammonia, monodentate nitroso, and adsorption oxygen species, respectively. The main active site is Fe1-top. For the γ-Fe2O3 with Ca poisoning, the Ca atom has a high adsorption energy on the surface of γ-Fe2O3 (001), which covers the catalyst surface and reduces the active sites. The presence of Ca atom decreases the adsorption performance of NH3, while slightly improving the NO and O2 adsorption. In particular, the Ca atom restrains the NH3 activation and NH2 formation, which is detrimental to the NH3-SCR process.

7.
J Colloid Interface Sci ; 612: 584-597, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35016019

RESUMEN

In this work, we proposed a novel strategy of copper (Cu) doping to enhance the nitrogen oxides (NOx) removal efficiency of iron (Fe)-based catalysts at low temperature through a simple citric acid mixing method, which is critical for its practical application. The doping of Cu significantly improves the deNOx performance of Fe-based catalysts below 200 °C, and the optimal catalyst is (Cu0.22Fe1.78)1-δO3, which deNOx efficiency can reach 100% at 160-240 °C. From the macro aspects, the main reasons for the excellent catalytic activity of the (Cu0.22Fe1.78)1-δO3 catalyst are the large number of oxygen vacancies (Ovac), appropriate Fe3+ and Cu2+ contents, stronger surface acidity and redox ability. From the micro aspects, the Ovac plays a key role in enhancing molecular adsorption, oxidation, and the deNOx reaction over the Fe-based catalyst surface, which promoting order is CuOvac > Ovac > Cu. This work provides a new insight for the mechanism study of oxygen vacancy engineering and also accelerates the development of CuFe bimetal composite catalysts at low temperature.

8.
J Hazard Mater ; 416: 125798, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33862481

RESUMEN

Activated carbon supported iron-based catalysts (FexOy/AC) show good deNOx efficiency at low temperature. The doping of chromium (Cr) greatly improves the catalyst activity. However, the detailed effect of doping Cr over FexOy/AC surface at molecular level is still a grey area. In this study, the roles of Cr dopant on gas adsorption and NO oxidation were deeply investigated by a DFT-D3 method. Results show that the synergy of Cr-Fe bimetal improves the binding capacity of Fe2O3/AC and Fe3O4/AC surfaces after doping Cr. NH3 can be adsorbed on Cr and Fe sites to form coordinated NH3. Doping Cr greatly improves the NH3 adsorption property on the Fe3O4/AC surface. NO molecule can combine with Cr, Fe, and O sites to form nitrosyl and nitrite. The doping of Cr increases the adsorption performance of NO on the Fe2O3/AC and Fe3O4/AC surfaces, especially for Fe3O4/AC surface. Furthermore, NO can be oxidized to NO2 by adsorption oxygen or active O sites of FexOy clusters. The doping of Cr restrains the formation of insoluble chelating bidentate nitrates and greatly reduces the reaction energy barrier of NO oxidation on the FexOy/AC surface, which can promote the deNOx reaction.

9.
Adv Mater ; 29(36)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28783217

RESUMEN

One of the key challenges of aqueous supercapacitors is the relatively low voltage (0.8-2.0 V), which significantly limits the energy density and feasibility of practical applications of the device. Herein, this study reports a novel Ni-Mn-O solid-solution cathode to widen the supercapacitor device voltage, which can potentially suppress the oxygen evolution reaction and thus be operated stably within a quite wide potential window of 0-1.4 V (vs saturated calomel electrode) after a simple but unique phase-transformation electrochemical activation. The solid-solution structure is designed with an ordered array architecture and in situ nanocarbon modification to promote the charge/mass transfer kinetics. By paring with commercial activated carbon anode, an ultrahigh voltage asymmetric supercapacitor in neutral aqueous LiCl electrolyte is assembled (2.4 V; among the highest for single-cell supercapacitors). Moreover, by using a polyvinyl alcohol (PVA)-LiCl electrolyte, a 2.4 V hydrogel supercapacitor is further developed with an excellent Coulombic efficiency, good rate capability, and remarkable cycle life (>5000 cycles; 95.5% capacity retention). Only one cell can power the light-emitting diode indicator brightly. The resulting maximum volumetric energy density is 4.72 mWh cm-3 , which is much superior to previous thin-film manganese-oxide-based supercapacitors and even battery-supercapacitor hybrid devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA