Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 9: 617589, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889570

RESUMEN

OBJECTIVE: Mesenchymal stromal cell-derived exosomes have been applied for the treatment of several immune diseases. This study aimed to explore the effect of human bone marrow-derived mesenchymal stem cell (hBMSC)-derived exosomes on acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). METHODS: hBMSC were cultured, and the culture supernatants were then collected to prepare exosomes using total exosome isolation reagent from Invitrogen. Mouse aGVHD model was established by allogeneic cell transplantation and injected with hBMSC-derived exosomes (Msc-exo) via tail vein. Exosomes from human fibroblast (Fib-exo) were used as the treatment control. The effects of Msc-exo on dendritic cells, CD4+, and CD8+ T cells in aGVHD mice were analyzed through flow cytometry. The impact on inflammatory cytokines was tested by ELISA. Besides, the body weight, survival rate, and clinical score of treated mice were monitored. RESULTS: Msc-exo were successfully prepared. aGVHD mice injected with Msc-exo led to 7-8-fold increase of the CD8α+ conventional dendritic cells (cDCs) and CD11b+ cDCs compared with the controls. In addition, Msc-exo altered the T help and Treg subpopulation, and decreased the cytotoxicity and proliferation of cytotoxic T cells to favor inflammatory inhibition in aGVHD mice. Mice that received Msc-exo exhibited decreased weight loss and reduced aGVHD clinical score in a time-dependent manner as well as reduced lethality compared with Fib-exo treated or untreated control. Furthermore, the levels of IL-2, TNF-α, and IFN-γ were decreased, as well as the level of IL-10 was increased after Msc-exo treatment in vivo and in vitro. CONCLUSION: hBMSC-derived exosomes could attenuate aGVHD damage and promote the survival of aGVHD mice by regulating the DC and T-cell subpopulation and function, and lead to inhibited inflammatory response in aGVHD mice.

3.
Cell Physiol Biochem ; 44(1): 279-292, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29130958

RESUMEN

BACKGROUND/AIMS: Hearts from diabetic subjects are susceptible to myocardial ischemia reperfusion (I/R) injury. Propofol has been shown to protect against myocardial I/R injury due to its antioxidant properties while the underlying mechanism remained incompletely understood. Thus, this study aimed to determine whether or not propofol could attenuate myocardial I/R injury by attenuating mitochondrial dysfunction/damage through upregulating Caveolin (Cav)-3 under hyperglycemia. METHODS: Cultured rat cardiomyocyte H9C2 cells were subjected to hypoxia/reoxygenation (H/R) in the absence or presence of propofol under high glucose (HG), and cell viability, lactate dehydrogenase (LDH) and mitochondrial viability as well as creatine kinase-MB (CK-MB), cardiac troponin I (cTnI) and intracellular adenosine triphosphate (ATP) content were measured with colorimetric Enzyme-Linked Immunosorbent Assays. Intracellular levels of oxidative stress was assessed using 2,7-dichlorodihydrofluorescein diacetate (DCF-DA) fluorescent staining and mitochondrial-dependent apoptosis was assessed by detecting mitochondrial membrane potential and the activation of apoptotic caspases 3 and 9. RESULTS: Exposure of cells to HG without or with H/R both significantly increased cell injury, cell apoptosis and enhanced oxidative stress that were associated with mitochondrial dysfunction and decreased Cav-3 protein expression. All these changes were further exacerbated following H/R under HG. Administration of propofol at concentrations from 12.5 to 50 µM but not 100 µM significantly attenuated H/R injury that was associated with increased Cav-3 expression and activation of the prosurvival proteins Akt and STAT3 with the optimal protective effects seen at 50 µM of propofol (P25). The beneficial effects of propofol(P25) were abrogated by Cav-3 disruption with ß-methyl-cyclodextrin. CONCLUSION: Propofol counteracts cardiomyocyte H/R injury by attenuating mitochondrial damage and improving mitochondrial biogenesis through upregulating Cav-3 during hyperglycemia.


Asunto(s)
Apoptosis/efectos de los fármacos , Caveolina 3/metabolismo , Propofol/farmacología , Regulación hacia Arriba/efectos de los fármacos , Animales , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Caveolina 3/genética , Hipoxia de la Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Glucosa/farmacología , Hiperglucemia/metabolismo , Hiperglucemia/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxígeno/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA