Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell Biol Toxicol ; 39(6): 2551-2568, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37957486

RESUMEN

BACKGROUND: The current study probed into how tumor cell-derived exosomes (Exos) mediated hsa_circ_0001739/lncRNA AC159540.1 to manipulate microRNA (miR)-218-5p/FTO-N6-methyladenosine (m6A)/MYC signal axis in liver metastasis in colorectal cancer (CRC). METHODS: hsa_circ_0001739 and lncRNA AC159540.1 were identified as the upstream regulator of miR-218-5p using ENCORI and LncBase databases. Expression patterns of miR-218-5p, hsa_circ_0001739, lncRNA AC159540.1, FTO, and MYC were detected, accompanied by loss-and-gain-of function assays to examine their effects on CRC cell biological functions. SW480 cells-derived Exos were purified, followed by in vitro studies to uncover the effect of hsa_circ_0001739/lncRNA AC159540. RESULTS: miR-218-5p was downregulated while hsa_circ_0001739/lncRNA AC159540.1 was upregulated in CRC tissues and cells. Silencing of hsa_circ_0001739/lncRNA AC159540.1 restrained the malignant phenotypes of CRC cells. Exos-mediated hsa_circ_0001739/lncRNA AC159540.1 competitively inhibited miR-218-5p to elevate FTO and MYC. The inducing role of Exos-mediated hsa_circ_0001739/lncRNA AC159540.1 in CRC was also validated in vivo. CONCLUSION: Conclusively, Exos-mediated circ_0001739/lncRNA AC159540.1 regulatory network is critical for CRC, offering a theoretical basis for CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Exosomas/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Neoplasias Colorrectales/genética , Proliferación Celular/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato
2.
mSphere ; 8(5): e0034623, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37642418

RESUMEN

Type III secretion system (T3SS) facilitates survival and replication of Edwardsiella piscicida in vivo. Identifying novel T3SS effectors and elucidating their functions are critical in understanding the pathogenesis of E. piscicida. E. piscicida T3SS effector EseG and EseJ was highly secreted when T3SS gatekeeper-containing protein complex EsaB-EsaL-EsaM was disrupted by EsaB deficiency. Based on this observation, concentrated secretomes of ΔesaB strain and ΔesaBΔesaN strain were purified by loading them into SDS-PAGE gel for a short electrophoresis to remove impurities prior to the in-the gel digestion and mass spectrometry. Four reported T3SS effectors and two novel T3SS effector candidates EseQ (ETAE_2009) and Trx2 (ETAE_0559) were unraveled by quantitative comparison of the identified peptides. EseQ and Trx2 were revealed to be secreted and translocated in a T3SS-dependent manner through CyaA-based translocation assay and immunofluorescent staining, demonstrating that EseQ and Trx2 are the novel T3SS effectors of E. piscicida. Trx2 was found to suppress macrophage apoptosis as revealed by TUNEL staining and cleaved caspase-3 of infected J774A.1 monolayers. Moreover, Trx2 has been shown to inhibit the p65 phosphorylation and p65 translocation into the nucleus, thus blocking the NF-κB pathway. Furthermore, depletion of Trx2 slightly but significantly attenuates E. piscicida virulence in a fish infection model. Taken together, an efficient method was established in unraveling T3SS effectors in E. piscicida, and Trx2, one of the novel T3SS effectors identified in this study, was demonstrated to suppress apoptosis and block NF- κB pathway during E. piscicida infection. IMPORTANCE Edwardsiella piscicida is an intracellular bacterial pathogen that causes intestinal inflammation and hemorrhagic sepsis in fish and human. Virulence depends on the Edwardsiella type III secretion system (T3SS). Identifying the bacterial effector proteins secreted by T3SS and defining their role is key to understanding Edwardsiella pathogenesis. EsaB depletion disrupts the T3SS gatekeeper-containing protein complex, resulting in increased secretion of T3SS effectors EseG and EseJ. EseQ and Trx2 were shown to be the novel T3SS effectors of E. piscicida by a secretome comparison between ∆esaB strain and ∆esaB∆esaN strain (T3SS mutant), together with CyaA-based translocation assay. In addition, Trx2 has been shown to suppress macrophage apoptosis and block the NF-κB pathway. Together, this work expands the known repertoire of T3SS effectors and sheds light on the pathogenic mechanism of E. piscicida.


Asunto(s)
Edwardsiella , Sistemas de Secreción Tipo III , Animales , Humanos , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/metabolismo , FN-kappa B , Edwardsiella/metabolismo , Peces
3.
J Spinal Cord Med ; : 1-9, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428443

RESUMEN

OBJECTIVE: To validate the Chinese version of the Community Integration Questionnaire-Revised (CIQ-R-C) for individuals with spinal cord injury. DESIGN: Cross-sectional study. SETTING: Shanghai Sunshine Rehabilitation Center. PARTICIPANTS: 317 adults with spinal cord injury in a rehabilitation center in Mainland China. INTERVENTIONS: Not applicable. METHODS: The CIQ-R-C (including an additional e-shopping item), global QoL, Zung Self-Rating Anxiety/Depression Scale (SAS/SDS), and Multidimensional Scale of Perceived Social Support (MSPSS) were administered. Reliability and validity analyses were conducted. RESULTS: Good item-domain correlations were found for 15 of the 16-item original CIQ-R, except for item 10 (leisure alone or with others). Exploratory Factor Analysis supported a construct of the CIQ-R-C (excluding item 10) as made of four domains (CFI = 0.94; RMSEA = 0.06): home, social engagement, digital social networking, and traditional social networking. Good internal consistency and test-retest reliability were observed in the total and the home subscale of the CIQ-R-C. Satisfactory construct validity was shown by the correlation analysis among the CIQ-R-C Scale, SAS/SDS, global QoL, and MSPSS. CONCLUSION: The CIQ-R-C Scale is valid and reliable, and can be used to assess community integration of individuals with spinal cord injury in China.

4.
mBio ; 13(4): e0125022, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35861543

RESUMEN

The intracellular EscE protein tightly controls the secretion of the type III secretion system (T3SS) middle and late substrates in Edwardsiella piscicida. However, the regulation of secretion by EscE is incompletely understood. In this work, we reveal that EscE interacts with EsaH and EsaG. The crystal structures of the EscE-EsaH complex and EscE-EsaG-EsaH complex were resolved at resolutions of 1.4 Å and 1.8 Å, respectively. EscE and EsaH form a hydrophobic groove to engulf the C-terminal region of EsaG (56 to 73 amino acids [aa]), serving as the cochaperones of T3SS needle protein EsaG in E. piscicida. V61, K62, M64, and M65 of EsaG play a pivotal role in maintaining the conformation of the ternary complex of EscE-EsaG-EsaH, thereby maintaining the stability of EsaG. An in vivo experiment revealed that EscE and EsaH stabilize each other, and both of them stabilize EsaG. Meanwhile, either EscE or EsaH can be secreted through the T3SS. The secondary structure of EsaH lacks the fourth and fifth α helices presented in its homologs PscG, YscG, and AscG. Insertion of the α4 and α5 helices of PscG or swapping the N-terminal 25 aa of PscG with those of EsaH starkly decreases the protein level of the chimeric EsaH, resulting in instability of EsaG and deactivation of the T3SS. To the best of our knowledge, these data represent the first reported structure of the T3SS needle complex of pathogens from Enterobacteriaceae and the first evidence for the secretion of T3SS needle chaperones. IMPORTANCE Edwardsiella piscicida causes severe hemorrhagic septicemia in fish. Inactivation of the type III secretion system (T3SS) increases its 50% lethal dose (LD50) by ~10 times. The secretion of T3SS middle and late substrates in E. piscicida is tightly controlled by the intracellular steady-state protein level of EscE, but the mechanism is incompletely understood. In this study, EscE was found to interact with and stabilize EsaH in E. piscicida. The EscE-EsaH complex is structurally analogous to T3SS needle chaperones. Further study revealed that EscE and EsaH form a hydrophobic groove to engulf the C-terminal region of EsaG, serving as the cochaperones stabilizing the T3SS needle protein EsaG. Interestingly, both EscE and EsaH are secreted. Our study reveals that the EscE-EsaH complex controls T3SS protein secretion by stabilizing EsaG, whose secretion in turn leads to the secretion of the middle and late T3SS substrates.


Asunto(s)
Edwardsiella , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Edwardsiella/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estructura Secundaria de Proteína , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo
5.
Vet Res ; 53(1): 40, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35692056

RESUMEN

Edwardsiella piscicida is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish. The type III secretion system (T3SS) is one of its two most important virulence islands. T3SS protein EseJ inhibits E. piscicida adhesion to epithelioma papillosum cyprini (EPC) cells by negatively regulating type 1 fimbria. Type 1 fimbria helps E. piscicida to adhere to fish epithelial cells. In this study, we characterized a functional unknown protein (Orf1B) encoded within the T3SS gene cluster of E. piscicida. This protein consists of 122 amino acids, sharing structural similarity with YscO in Vibrio parahaemolyticus. Orf1B controls secretion of T3SS translocon and effectors in E. piscicida. By immunoprecipitation, Orf1B was shown to interact with T3SS ATPase EsaN. This interaction may contribute to the assembly of the ATPase complex, which energizes the secretion of T3SS proteins. Moreover, disruption of Orf1B dramatically decreased E. piscicida adhesion to EPC cells due to the increased steady-state protein level of EseJ within E. piscicida. Taken together, this study partially unraveled the mechanisms through which Orf1B promotes secretion of T3SS proteins and contributes to E. piscicida adhesion. This study helps to improve our understanding on molecular mechanism of E. piscicida pathogenesis.


Asunto(s)
Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Adenosina Trifosfatasas , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Edwardsiella , Infecciones por Enterobacteriaceae/veterinaria , Células Epiteliales/metabolismo , Peces , Factores de Virulencia/genética
6.
Microb Pathog ; 167: 105577, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35561979

RESUMEN

Edwardsiella ictaluri, a Gram-negative intracellular pathogen, is the causative agent of enteric septicemia in channel catfish, and catfish aquaculture in China suffers heavy economic losses due to E. ictaluri infection. Vaccination is an effective control measure for this disease. In this study, an attenuated E. ictaluri strain was acquired through deletion mutation of the T3SS protein eseJei, and the ΔeseJei strain fails to replicate in the epithelioma papillosum of carp cells. The type 1 fimbria plays a pivotal role in the adhesion of E. ictaluri, and it was found in this study that deletion of -245 to -50 nt upstream of fimA increases its adhesion to around five times that of the WT strain. A hyper-adhesive and highly attenuated double mutant (ΔeseJeiΔfimA-245--50 strain) was constructed, and it was used as a vaccine candidate in yellow catfish via bath immersion at a dosage of 1 × 105 CFU/mL. It was found that this vaccine candidate can stimulate protection when challenged with E. ictaluri HSN-1 at 5 × 107 CFU/mL (∼20 × LD50). The survival rate was 83.61% for the vaccinated group and 33.33% for the sham-vaccinated group. The RPS (relative percent of survival) of the vaccination trial reached 75.41%. In conclusion, the ΔeseJeiΔfimA-245--50 strain developed in this study can be used as a vaccine candidate. It excels in terms of ease of delivery (via bath immersion) and is highly efficient in stimulating protection against E. ictaluri infection.


Asunto(s)
Vacunas Bacterianas , Bagres , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Animales , Adhesión Bacteriana , Bagres/microbiología , Edwardsiella ictaluri , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Inmersión , Vacunas Atenuadas
7.
J Spinal Cord Med ; 45(5): 710-719, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33263492

RESUMEN

OBJECTIVE: To validate the WHOQOL Scales (WHOQOL-BREF and WHOQOL-DIS module) for people with spinal cord injury in Mainland China. DESIGN: Cross-sectional study. SETTING: Shanghai Sunshine Rehabilitation Center. PARTICIPANTS: 249 adults with SCI who were admitted to a rehabilitation training program between 2017 and 2019. INTERVENTIONS: Not applicable. METHODS: Questionnaires about personal and injury characteristics, the WHOQOL Scales, global QOL, Zung Self-Rating Anxiety/Depression Scale (SAS/SDS), and Community Integration Questionnaire (CIQ) were administrated. Floor and ceiling effects, reliability, and validity analyses were tested. RESULTS: The 8 domains of the WHOQOL Scales showed no floor or ceiling effects. Cronbach alpha values of the WHOQOL-BREF and the WHOQOL-DIS were 0.93 and 0.78, respectively. Test-retest reliability was good for the WHOQOL Scales. Satisfactory criterion-related validity was shown by the correlation analysis among the WHOQOL Scales, SAS/SDS, CIQ, and global QOL. Good item-domain correlations (>0.50) were found for 38 items of the 39-item WHOQOL Scales, excepting the "impact of disability" (0.48) of the WHOQOL-DIS. Confirmatory Factor Analysis (CFA) supported a construct of the WHOQOL-DIS as made of four domains: autonomy, social inclusion, social activities, and discrimination. CFI and RMSEA values were 0.91 and 0.07, respectively, for the four-domain structure WHOQOL-DIS, with a higher-order factor. WHOQOL-BREF domains and WHOQOL-DIS scores showed the predicted pattern among a priori known groups. CONCLUSION: The WHOQOL Scales are valid and reliable, and they can be used to measure QOL in people with SCI in China. We suggest the WHOQOL-DIS be analyzed as one general item constituting a single 12-item domain.


Asunto(s)
Calidad de Vida , Traumatismos de la Médula Espinal , Adulto , China , Estudios Transversales , Humanos , Psicometría , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Organización Mundial de la Salud
8.
Front Microbiol ; 12: 643498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776977

RESUMEN

In this study, a hypothetical protein (ORF02740) secreted by Edwardsiella piscicida was identified. We renamed the ORF02740 protein as EvpQ, which is encoded by a mobile genetic element (MGE) in E. piscicida genome. The evpQ gene is spaced by 513 genes from type VI secretion system (T6SS) gene cluster. Low GC content, three tRNA, and three transposase genes nearby evpQ define this MGE that evpQ localizes as a genomic island. Sequence analysis reveals that EvpQ shares a conserved domain of C70 family cysteine protease and shares 23.91% identity with T3SS effector AvrRpt2 of phytopathogenic Erwinia amylovora. Instead, EvpQ of E. piscicida is proved to be secreted at a T6SS-dependent manner, and it can be translocated into host cells. EvpQ is thereof a novel T6SS effector. Significantly decreased competitive index of ΔevpQ strain in blue gourami fish (0.53 ± 0.27 in head kidney and 0.44 ± 0.19 in spleen) indicates that EvpQ contributes to the pathogenesis of E. piscicida. At 8-, 18-, and 24-h post-subculture into DMEM, the transcription of evpQ was found to be negatively regulated by Fur and positively regulated by EsrC, and the steady-state protein levels of EvpQ are negatively controlled by RpoS. Our study lays a foundation for further understanding the pathogenic role of T6SS in edwardsiellosis.

9.
J Fish Dis ; 43(10): 1145-1154, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32720397

RESUMEN

Aeromonas salmonicida is a gram-negative bacterium that is the causative agent of furunculosis. An A. salmonicida strain was isolated from diseased turbot (Scophthalmus maximus) with the sign of furunculosis from North China. Based on vapA gene, the strain was further classified as A. salmonicida subsp. masoucida RZ6S-1. Culturing RZ6S-1 strain at high temperature (28°C) obtained the virulence attenuated strain RZ6S. Genome sequence comparison between the two strains revealed the loss of the type IV secretion system (T4SS) and type III secretion system (T3SS) from the native plasmid pAsmB-1 and pAsmC-1 of wild-type strain RZ6S-1, respectively. Further study demonstrated that the wild-type strain RZ6S-1, but not its derivative mutant RZ6S, can stimulate apoptosis. Elevated protein level of cleaved caspase-3 was detected from epithelioma papulosum cyprinid (EPC) cells infected with wild-type strain RZ6S-1 as compared with that infected with RZ6S strain. Meanwhile, the invasion of the mutant strain RZ6S was about 17-fold higher than the wild-type strain RZ6S-1, suggesting that some protein(s) from A. salmonicida subsp. masoucida RZ6S-1 suppress its invasion. The RZ6S mutant strain was attenuated, since its LD50 is over 10,000 times higher compared to the wild-type strain as revealed in the turbot infection model.


Asunto(s)
Aeromonas/patogenicidad , Enfermedades de los Peces/microbiología , Peces Planos/microbiología , Forunculosis/microbiología , Aeromonas/clasificación , Animales , Sistemas de Secreción Bacterianos/genética , China , Enfermedades de los Peces/patología , Forunculosis/patología , Plásmidos/genética
10.
Cell Microbiol ; 22(7): e13193, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32068939

RESUMEN

The type III secretion system effector EseJ plays a regulatory role inside bacteria. It suppresses the adherence of Edwardsiella piscicida (E. piscicida) to host epithelial cells by down regulating type 1 fimbriae. In this study, we observed that more macrophages infected with ΔeseJ strain of E. piscicida detached as compared with those infected with the wild-type (WT) strain. Terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining and cleaved caspase-3 examination revealed that the detachment is due to increased apoptosis, suggesting that EseJ suppresses macrophage apoptosis. However, apoptosis inhibition by EseJ is not relative to a type III secretion system (T3SS) and is not related to EseJ's translocation. Since EseJ negatively regulates type 1 fimbriae, murine J774A.1 cells were infected with ΔeseJΔfimA or ΔeseJΔfimH strains. It was demonstrated that ΔeseJ stimulates macrophage apoptosis through type 1 fimbriae. Moreover, we found that infecting J774A.1 cells with the ΔeseJ strain increased levels of cleaved caspase-8, caspase-9, and caspase-3, demonstrating that EseJ inhibits apoptosis through either an extrinsic or a combination of extrinsic and intrinsic pathways. Pre-treatment of macrophages with caspase-8 inhibitor prior to infection with the ΔeseJ strain decreased the levels of cleaved caspase-8, caspase-9, and caspase-3, indicating that the ΔeseJ strain stimulates apoptosis, mainly through an extrinsic pathway by up regulating type 1 fimbriae. Zebrafish larvae or blue gourami fish infected with the ΔeseJ strain consistently exhibited higher apoptosis than those infected with the E. piscicida WT strain or ΔeseJΔfimA strain. Taken together, we revealed that the T3SS protein EseJ of E. piscicida inhibits host apoptosis, mainly through an extrinsic pathway by down regulating type 1 fimbriae.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caspasa 8/metabolismo , Edwardsiella/metabolismo , Fimbrias Bacterianas/metabolismo , Animales , Apoptosis , Caspasa 3 , Caspasa 9 , Línea Celular , Edwardsiella/patogenicidad , Infecciones por Enterobacteriaceae/metabolismo , Epítopos , Enfermedades de los Peces/microbiología , Interacciones Huésped-Patógeno/fisiología , Larva , Lipopolisacáridos , Macrófagos , Ratones , Sistemas de Secreción Tipo III/metabolismo , Pez Cebra
11.
Infect Immun ; 87(7)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30988056

RESUMEN

The type III secretion system (T3SS) of Edwardsiella piscicida plays a crucial role in its pathogenesis. Our previous study indicated that the T3SS effector protein EseJ inhibits the bacterium's adhesion to epithelioma papillosum cyprini (EPC) cells, while the mechanism of the inhibition remains elusive. In this study, we revealed that EseJ negatively regulates the fimA gene, as demonstrated by comparative transcription analysis of ΔeseJ and wild-type (WT) strains. As well, the dramatically increased production of FimA was detected in the absence of EseJ compared to that by the WT strain. The adherence of the ΔeseJ strain decreased far below that of the WT strain in the absence of FimA, demonstrating that FimA plays a pivotal role in the hyperadhesion of the ΔeseJ strain. Adherence analysis with a strain with truncated eseJ demonstrated that the C-terminal region of EseJ (Gly1191 to Ile1359) is necessary to inhibit the transcription of the type 1 fimbrial operon. Binding between the EseJ fragment from amino acid residues 1191 to 1359 and the DNA fragment upstream of fimA was not detected, indicating that EseJ might indirectly regulate the type 1 fimbrial operon. Our study reveals that EseJ controls E. piscicida adherence to EPC cells by negatively regulating the type 1 fimbrial operon.


Asunto(s)
Adhesión Bacteriana/fisiología , Edwardsiella/patogenicidad , Infecciones por Enterobacteriaceae/microbiología , Fimbrias Bacterianas/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Animales , Proteínas Bacterianas/genética , Edwardsiella/genética , Infecciones por Enterobacteriaceae/metabolismo , Genes Bacterianos/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Transcripción Genética/genética , Factores de Virulencia/genética
12.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770403

RESUMEN

The type III secretion system (T3SS) is one of the most important virulence factors of the fish pathogen Edwardsiella piscicida It contains three translocon proteins, EseB, EseC, and EseD, required for translocation of effector proteins into host cells. We have previously shown that EseB forms filamentous appendages on the surface of E. piscicida, and these filamentous structures mediate bacterial cell-cell interactions promoting autoaggregation and biofilm formation. In the present study, we show that EseC, but not EseD, inhibits the autoaggregation and biofilm formation of E. piscicida At 18 h postsubculture, a ΔeseC strain developed strong autoaggregation and mature biofilm formation, accompanied by enhanced formation of EseB filamentous appendages. This is in contrast to the weak autoaggregation and immature biofilm formation seen in the E. piscicida wild-type strain. EseE, a protein that directly binds to EseC and also positively regulates the transcription of the escC-eseE operon, was liberated and showed increased levels in the absence of EseC. This led to augmented transcription of the escC-eseE operon, thereby increasing the steady-state protein levels of intracellular EseB, EseD, and EseE, as well as biofilm formation. Notably, the levels of intracellular EseB and EseD produced by the ΔeseE and ΔeseC ΔeseE strains were similar but remarkably lower than those produced by the wild-type strain at 18 h postsubculture. Taken together, we have shown that the translocon protein EseC inhibits biofilm formation through sequestering EseE, a positive regulator of the escC-eseE operon.IMPORTANCEEdwardsiella piscicida, previously known as Edwardsiella tarda, is a Gram-negative intracellular pathogen that mainly infects fish. The type III secretion system (T3SS) plays a pivotal role in its pathogenesis. The T3SS translocon protein EseB is required for the assembly of filamentous appendages on the surface of E. piscicida The interactions between the appendages facilitate autoaggregation and biofilm formation. In this study, we explored the role of the other two translocon proteins, EseC and EseD, in biofilm formation. We have demonstrated that EseC, but not EseD, inhibits the autoaggregation and biofilm formation of E. piscicida, providing new insights into the regulatory mechanism involved in E. piscicida biofilm formation.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Biopelículas/efectos de los fármacos , Edwardsiella/efectos de los fármacos , Sistemas de Secreción Tipo III/efectos de los fármacos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al Calcio , Edwardsiella/genética , Enfermedades de los Peces/microbiología , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Glicoproteínas de Membrana , Operón/genética , Receptores Citoplasmáticos y Nucleares , Receptores de Péptidos , Factores de Virulencia/metabolismo
13.
Fish Shellfish Immunol ; 73: 11-21, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29162543

RESUMEN

Natural killer lysin (NK-lysin), produced by cytotoxic T lymphocytes and natural killer cells, is a cationic antimicrobial peptide that has a broad antimicrobial spectrum, including bacteria, viruses, and parasites. Nevertheless, the implication of NK-lysin in the protection against bacterial infection is not aware in common carp. In this study, six different NK-lysin genes (nkl1, nkl2, nkl3, nkl4, nkl5 and nkl6) were identified in the common carp genome. Each of the mature peptides of common carp NK-lysin has six well-conserved cysteine residues, and shares a Saposin B domain, characteristic of saposin-like protein (SALIP) family. The gene nkl1 contains 5 extrons and 4 introns, and nkl2, nkl3, nkl4 or nkl5 contains 4 extrons and 3 introns, however, the nkl6 has 3 extrons and 2 introns. By quantitative real-time PCR, nkl2 transcripts were predominantly expressed in spleen of healthy common carp, while elevated mainly in gill and spleen upon Aeromonas hydrophila infection. The recombinant NK-lysin-2 purified from Pichia pastoris shows antibacterial activity against Staphylococcus aureus (Gram-positive), and Escherichia coli M15, Aeromonas hydrophila, as well as Edwardsiella tarda (Gram-negative), the latter two are important pathogens of aquaculture. Our results indicate that NK-lysin in common carp might play an important role in fish immune response by enhancing antibacterial defense against bacterial pathogens.


Asunto(s)
Carpas/genética , Carpas/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Proteolípidos/genética , Proteolípidos/inmunología , Aeromonas hydrophila/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica , Infecciones por Bacterias Gramnegativas/inmunología , Filogenia , Proteolípidos/química , Alineación de Secuencia/veterinaria
14.
Infect Immun ; 85(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28630070

RESUMEN

The type III secretion system (T3SS) plays a crucial role in the pathogenesis of many Gram-negative bacteria, including Edwardsiella tarda, an important fish pathogen. Within the E. tarda T3SS, there are three proteins (EsaB/EsaL/EsaM) that are homologous to proteins present in many other bacteria, including SpiC/SsaL/SsaM in Salmonella, SepD/SepL/CesL in enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC), and YscB/YopN/SycN in Yersinia EsaL was found to interact with both EsaB and EsaM within the bacterial cell, as revealed by a coimmunoprecipitation assay. Moreover, EsaM is required for EsaB stability, and the two proteins interact with each other. EsaB, EsaL, and EsaM are all indispensable for the secretion of the T3SS translocon protein EseC into supernatants under pH 5.5 and pH 7.2 conditions. Unlike EseC, EseG is a T3SS effector whose secretion is suppressed by EsaL at pH 7.2 while it is promoted at pH 5.5 condition. Despite this finding, mutant strains lacking EsaB, EsaL, or EsaM (i.e., the ΔesaB, ΔesaL, or ΔesaM strain, respectively) were all outcompeted by wild-type E. tarda during a coinfection model. These results demonstrate that EsaB/EsaL/EsaM form a ternary complex controlling the secretion of T3SS translocon and effector proteins and contributing to E. tarda pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Edwardsiella tarda/metabolismo , Regulación de la Expresión Génica , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Línea Celular , Infecciones por Enterobacteriaceae/microbiología , Enfermedades de los Peces/microbiología , Peces , Eliminación de Gen , Macrófagos/microbiología , Ratones , Unión Proteica , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Transporte de Proteínas
15.
Fish Shellfish Immunol ; 66: 112-119, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28478260

RESUMEN

Interleukin-8 (IL-8), a CXC-type chemokine, plays a key role in acute inflammation by recruiting neutrophils in mammals. In the present study, the open reading frame (ORF) of IL-8, encoding 99 amino acids was cloned in mandarin fish, and its function in inflammation was investigated. The IL-8 contains four conserved cysteine residues, with the first two forming the CXC signature motif. The genomic sequence of mandarin fish IL-8 has four exons and three introns, a typical gene organization of the CXC chemokine. Bioactive recombinant IL-8 (rIL-8) exhibited a chemotactic effect on head kidney leukocytes in vitro, and activates the transcription of the inflammatory genes, IL-8 and IL-1ß. When mandarin fish was challenged intraperitoneally with the pathogenic bacterium Flavobacterium columnare G4, the steady-state protein level of IL-8 was up-regulated in trunk kidney and head kidney. These results suggest that IL-8 is a functional CXC chemokine in mandarin fish, and plays a key role in the inflammatory responses towards bacterial infection.


Asunto(s)
Enfermedades de los Peces/inmunología , Proteínas de Peces/inmunología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/fisiología , Interleucina-8/genética , Interleucina-8/inmunología , Perciformes , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Proteínas de Peces/química , Proteínas de Peces/genética , Infecciones por Flavobacteriaceae/inmunología , Riñón Cefálico/inmunología , Inmunomodulación , Interleucina-1beta/genética , Interleucina-8/química , Leucocitos/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia/veterinaria , Transcripción Genética
16.
Mil Med Res ; 4(1): 33, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29502521

RESUMEN

BACKGROUND: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing. METHODS: Shark skin collagen (SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for pH. A shark skin collagen sponge (SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane (PU) film (SSCS + PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS + PU on the healing of seawater-immersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawater-immersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3rd day group, 5th day group, 7th day group and 12th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS + PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze (GZ) + PU group, chitosan (CS) + PU group and SSCS + PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-ß expression levels in the wounded tissues were measured by standard methods. RESULTS: The results of Ultraviolet-visible (UV-vis) spectrum, Fourier-transform infrared (FTIR) spectrum, circular dichroism (CD) spectra, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and amino acid composition analyses of SSC demonstrated that SSC is type I collagen. SSCS had a homogeneous porous structure of approximately 200 µm, porosity rate of 83.57% ± 2.64%, water vapor transmission ratio (WVTR) of 4500 g/m2, tensile strength of 1.79 ± 0.41 N/mm, and elongation at break of 4.52% ± 0.01%. SSCS had significant beneficial effects on seawater-immersed wound healing. On the 3rd day, the healing rates in the GZ negative control, CS positive control and SSCS rats were 13.94% ± 5.50%, 29.40% ± 1.10% and 47.24% ± 8.40%, respectively. SSCS also enhanced TGF-ß and CD31 expression in the initial stage of the healing period. The SSCS + PU dressing effectively protected wounds from seawater immersion for at least 4 h, and accelerated re-epithelialization, vascularization and granulation formation of seawater-immersed wounds in the earlier stages of wound healing, and as well as significantly promoted wound healing. The SSCS + PU dressing also enhanced expression of TGF-ß and CD31. The effects of SSCS and SSCS + PU were superior to those of both the chitosan and gauze dressings. CONCLUSIONS: SSCS has significant positive effects on the promotion of seawater-immersed wound healing, and a SSCS + PU dressing effectively prevents seawater immersion, and significantly promotes seawater-immersed wound healing.


Asunto(s)
Colágeno/uso terapéutico , Ratas/crecimiento & desarrollo , Agua de Mar/efectos adversos , Cicatrización de Heridas/efectos de los fármacos , Análisis de Varianza , Animales , Vendajes/normas , Colágeno/farmacología , Ratas Sprague-Dawley/crecimiento & desarrollo , Receptores de IgG/análisis , Tiburones/anatomía & histología , Piel/lesiones , Factor de Crecimiento Transformador beta/análisis
17.
Vet Microbiol ; 190: 12-18, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27283851

RESUMEN

Type III secretion system (T3SS) is a large macromolecular assembly found on the surface of many pathogenic Gram-negative bacteria. Edwardsiella tarda is an important Gram-negative pathogen that employs T3SS to deliver effectors into host cells to facilitate its survival and replication. EseB, EseC, and EseD, when secreted, form a translocon complex EseBCD on host membranes through which effectors are translocated. The orf19 gene (esaE) of E. tarda is located upstream of esaK, and downstream of esaJ, esaI, esaH and esaG in the T3SS gene cluster. When its domains were searched using Delta-Blast, the EsaE protein was found to belong to the T3SS YscJ/PrgK family. In the present study, it is found that EsaE is not secreted into culture supernatant, and the deletion of esaE abolished the secretion of T3SS translocon proteins EseBCD and T3SS effector EseG. Increased steady-state protein level of EseC and EseD was detected in bacterial pellet of ΔesaE strain although a reduced level was observed for the eseC and eseD transcription. EsaE was found to localize on membrane but not in the cytoplasm of E. tarda by fractionation. In blue gourami fish infection model, 87.88% of blue gourami infected with ΔesaE strain survived whereas only 3.03% survived when infected with wild-type strain. Taken together, our study demonstrated that EsaE is probably an apparatus protein of T3SS, which contributes to the pathogenesis of E. tarda in fish.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/metabolismo , Edwardsiella tarda , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/fisiopatología , Virulencia/genética , Animales , Proteínas Bacterianas/genética , Edwardsiella tarda/genética , Edwardsiella tarda/patogenicidad , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/fisiopatología , Enfermedades de los Peces/microbiología , Eliminación de Gen
18.
Infect Immun ; 84(8): 2336-2344, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27271743

RESUMEN

Edwardsiella tarda is an important Gram-negative pathogen that employs a type III secretion system (T3SS) to deliver effectors into host cells to facilitate bacterial survival and replication. These effectors are translocated into host cells through a translocon complex composed of three secreted proteins, namely, EseB, EseC, and EseD. The secretion of EseB and EseD requires a chaperone protein called EscC, whereas the secretion of EseC requires the chaperone EscA. In this study, we identified a novel protein (EseE) that also regulates the secretion of EseC. An eseE deletion mutant secreted much less EseC into supernatants, accompanied by increased EseC levels within bacterial cells. We also demonstrated that EseE interacted directly with EseC in a pulldown assay. Interestingly, EseC, EseE, and EscA were able to form a ternary complex, as revealed by pulldown and gel filtration assays. Of particular importance, the deletion of eseE resulted in decreased levels of EseB and EseD proteins in both the bacterial pellet and supernatant fraction. Furthermore, real-time PCR assays showed that EseE positively regulated the transcription of the translocon operon escC-eseE, comprising escC, eseB, escA, eseC, eseD, and eseE These effects of EseE on the translocon components/operon appeared to have a functional consequence, since the ΔeseE strain was outcompeted by wild-type E. tarda in a mixed infection in blue gourami fish. Collectively, our results demonstrate that EseE not only functions as a chaperone for EseC but also acts as a positive regulator controlling the expression of the translocon operon escC-eseE, thus contributing to the pathogenesis of E. tarda in fish.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Edwardsiella tarda/fisiología , Operón , Animales , Proteínas Bacterianas/química , Infecciones por Enterobacteriaceae/microbiología , Regulación Bacteriana de la Expresión Génica , Orden Génico , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Unión Proteica , Transporte de Proteínas , Análisis de Secuencia de ADN , Eliminación de Secuencia , Transcripción Genética , Sistemas de Secreción Tipo III , Virulencia/genética
19.
Infect Immun ; 84(1): 2-10, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26459509

RESUMEN

The type III secretion system (T3SS) of Edwardsiella tarda is crucial for its intracellular survival and pathogenesis in fish. The orf13 gene (escE) of E. tarda is located 84 nucleotides (nt) upstream of esrC in the T3SS gene cluster. We found that EscE is secreted and translocated in a T3SS-dependent manner and that amino acids 2 to 15 in the N terminus were required for a completely functional T3SS in E. tarda. Deletion of escE abolished the secretion of T3SS translocators, as well as the secretion and translocation of T3SS effectors, but did not influence their intracellular protein levels in E. tarda. Complementation of the escE mutant with a secretion-incompetent EscE derivative restored the secretion of translocators and effectors. Interestingly, the effectors that were secreted and translocated were positively correlated with the EscE protein level in E. tarda. The escE mutant was attenuated in the blue gourami fish infection model, as its 50% lethal dose (LD50) increased to 4 times that of the wild type. The survival rate of the escE mutant-strain-infected fish was 69%, which was much higher than that of the fish infected with the wild-type bacteria (6%). Overall, EscE represents a secreted T3SS regulator that controls effector injection and translocator secretion, thus contributing to E. tarda pathogenesis in fish. The homology of EscE within the T3SSs of other bacterial species suggests that the mechanism of secretion and translocation control used by E. tarda may be commonly used by other bacterial pathogens.


Asunto(s)
Proteínas Bacterianas/genética , Edwardsiella tarda/patogenicidad , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Sistemas de Secreción Tipo III/genética , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Línea Celular , Edwardsiella tarda/genética , Enfermedades de los Peces/patología , Proteínas de Peces/metabolismo , Peces , Regulación Bacteriana de la Expresión Génica , Células HeLa , Humanos , Ratones , Transporte de Proteínas , Análisis de Secuencia de ADN , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
20.
Appl Environ Microbiol ; 81(21): 7394-402, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26253667

RESUMEN

Flavobacterium columnare is an important bacterial pathogen of freshwater fish that causes high mortality of infected fish and heavy economic losses in aquaculture. The pathogenesis of this bacterium is poorly understood, in part due to the lack of efficient methods for genetic manipulation. In this study, a gene deletion strategy was developed and used to determine the relationship between the production of chondroitin lyases and virulence. The F. johnsoniae ompA promoter (PompA) was fused to sacB to construct a counterselectable marker for F. columnare. F. columnare carrying PompA-sacB failed to grow on media containing 10% sucrose. A suicide vector carrying PompA-sacB was constructed, and a gene deletion strategy was developed. Using this approach, the chondroitin lyase-encoding genes, cslA and cslB, were deleted. The ΔcslA and ΔcslB mutants were both partially deficient in digestion of chondroitin sulfate A, whereas a double mutant (ΔcslA ΔcslB) was completely deficient in chondroitin lyase activity. Cells of F. columnare wild-type strain G4 and of the chondroitin lyase-deficient ΔcslA ΔcslB mutant exhibited similar levels of virulence toward grass carp in single-strain infections. Coinfections, however, revealed a competitive advantage for the wild type over the chondroitin lyase mutant. The results indicate that chondroitin lyases are not essential virulence factors of F. columnare but may contribute to the ability of the pathogen to compete and cause disease in natural infections. The gene deletion method developed in this study may be employed to investigate the virulence factors of this bacterium and may have wide application in many other members of the phylum Bacteroidetes.


Asunto(s)
Condroitín Liasas/metabolismo , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/enzimología , Flavobacterium/fisiología , Eliminación de Gen , Factores de Virulencia/metabolismo , Animales , Carpas , Condroitín Liasas/deficiencia , Condroitín Liasas/genética , Sulfatos de Condroitina/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/patología , Flavobacterium/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Virulencia , Factores de Virulencia/deficiencia , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...