Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Int J Biol Macromol ; 269(Pt 1): 132114, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38714279

RESUMEN

Mesona chinensis polysaccharide (MCP) has excellent gel-forming characteristic, previous studies showed that MCP could affect the gelling and structural properties of rice starch, but the effect of MCP on rice starch from different types is not clarified. In this study, the effects of MCP on the pasting, rheological, and structural characteristics of glutinous rice starch (GRS), japonica rice starch (JRS), and indica rice starch (IRS) were investigated. The results showed that GRS-MCP has the best viscosity, its peak and final viscosities are higher than JRS-MCP and IRS-MCP. The gel network structure was enhanced by MCP in the order of IRS > JRS > GRS, which was reflected by greater elasticity, higher gel strength and hardness, and less free water in JRS-MCP and IRS-MCP. MCP also enhanced the ordered structure and thermal stability of the three starch gels, which is conducive to their application in the market. These findings provide new theoretical insights to produce rice starch-based foods.

2.
Food Funct ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738974

RESUMEN

Our laboratory previously extracted bound polyphenols (BPP) in insoluble dietary fiber from navel orange peel (NOP-IDF), and the aim of this study was to investigate the anti-inflammatory activity and potential molecular mechanisms of BPP by establishing an LPS-induced intestinal-like Caco-2/RAW264.7 co-culture inflammation model. The results demonstrated that BPP reduced the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as the production of pro-inflammatory cytokines, nitric oxide (NO), and reactive oxidative species (ROS) during the inflammatory damage process. Furthermore, BPP alleviated the lipopolysaccharides (LPS)-induced intestinal barrier damage by attenuating the decrease in trans-epithelial electrical resistance (TEER), diamine oxidase (DAO) activity, and intestinal alkaline phosphatase (IAP) activity, as well as the downregulation of ZO-1, Occludin, and Claudin-1 protein expression levels. RNA-seq results on RAW264.7 cells in the co-culture model showed that the NF-κB and JAK-STAT pathways belonged to the most significantly affected signaling pathways in the KEGG analysis, and western blot confirmed that they are essential for the role of BPP in intestinal inflammation. Additionally, overexpression of the granulocyte-macrophage colony-stimulating factor (CSF2) gene triggered abnormal activation of the NF-κB and JAK-STAT pathways and high-level expression of inflammatory factors, while BPP effectively improved this phenomenon. The above results suggested that BPP could inhibit intestinal inflammatory injury and protect intestinal barrier integrity through CSF2-mediated NF-κB and JAK-STAT pathways.

3.
J Food Sci ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38685863

RESUMEN

Lipid oxidation often accompanies the processing and storage of peanuts, which causes a serious waste of peanut resources. To solve the problem of being prone to oxidation in peanut processing, a ternary complex antioxidant based on rosemary extract (RE) was constructed to investigate its effect on the oxidative and thermal stability of peanuts, and the inhibition of peanut oxidation by compound antioxidants was revealed by dynamic Arrhenius formula and complexation theory. The results showed that there was a synergistic effect between RE and Tert-butyl hydroquinone (TBHQ), and the antioxidant effects of RE and TBHQ were 4.86 and 1.45 times higher when used in combination than when used alone, respectively. In addition, RE-TBHQ-CA (citric acid) effectively inhibited primary and secondary oxidation of peanuts with a shelf life 8.7 times longer than that of control peanuts. This study provides a novel antioxidant compounding idea, which has a positive effect on improving the quality of peanut and other nut products, prolonging the shelf life and reducing the waste of resources. PRACTICAL APPLICATION: Compounding a complex antioxidant that permits its use in peanuts. It was found that rosemary and TBHQ might have synergistic antioxidant effects. Meanwhile, this combination of RE-TBHQ-CA effectively inhibited the oxidation of peanut oils and prolonged the shelf life of peanuts. RE-TBHQ-CA is a highly efficient complex antioxidant that can reduce the amounts of antioxidants added while maintaining high antioxidant efficiency, which may be useful for the future preservation and storage of nut products as it positively affects the quality and shelf life of the product.

4.
Foods ; 13(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611388

RESUMEN

Functional foods have potential health benefits for humans. Lotus seeds (LS) as functional foods have excellent antioxidant activities. However, the differences in chemical composition of different LS cultivars may affect their antioxidant activities. This study comprehensively analyzed the differences among five LS cultivars based on metabolomics and further revealed the effects of metabolites on antioxidant activities by correlation analysis. A total of 125 metabolites were identified in LS using UPLC-Q/TOF-MS. Then, 15 metabolites were screened as differential metabolites of different LS cultivars by chemometrics. The antioxidant activities of LS were evaluated by DPPH•, FRAP, and ABTS•+ assays. The antioxidant activities varied among different LS cultivars, with the cultivar Taikong 66 showing the highest antioxidant activities. The correlation analysis among metabolites and antioxidant activities highlighted the important contribution of phenolics and alkaloids to the antioxidant activities of LS. Particularly, 11 metabolites such as p-coumaric acid showed significant positive correlation with antioxidant activities. Notably, 6 differential metabolites screened in different LS cultivars showed significant effects on antioxidant activities. These results revealed the important effects of phytochemicals on the antioxidant activities of different LS cultivars. This study provided evidence for the health benefits of different LS cultivars.

5.
Foods ; 13(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38611417

RESUMEN

Natural macromolecular substances are prevalent in the organs of plants and animals, such as polysaccharides, resins, proteins, etc [...].

6.
Food Funct ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687276

RESUMEN

In this study, it was found that epigallocatechin-3-gallate (EGCG) could extend the lifespan of Caenorhabditis elegans (C. elegans) induced by 100 µM acrolein (ACR) at all test concentrations (300, 400, 500, 600, and 700 µM). Notably, 500 µM EGCG exhibited the most significant mean lifespan extension, increasing it by approximately 32.5%. Furthermore, 500 µM EGCG effectively reduced elevated levels of reactive oxygen species (ROS) and lipofuscin production caused by acrolein. It also bolstered the activity of antioxidant enzymes and mitigated malondialdehyde (MDA) levels compared to the ACR-only group. These effects appeared independent of dietary restrictions. Additionally, qPCR results revealed different changes in the transcription levels of 11 genes associated with antioxidative and anti-aging functions following EGCG treatment. At the expression level, GST-4::GFP, SOD-3::GFP and HSP-16.2::GFP exhibited an initial increase with ACR treatment followed by a decrease with EGCG treatment, while the expression pattern of these three GFPs remained consistent with the enzyme activity and transcription regulation level. EGCG treatment also reduced the nuclear localization of SKN-1 and DAF-16 in the MAPK and IIS pathways that were enhanced by ACR. Moreover, the longevity-promoting effects of EGCG were diminished or absent in 13 longevity gene-deletion mutants. In conclusion, EGCG demonstrates protective effects on ACR-induced C. elegans, with the IIS and MAPK pathways playing a critical role in enhancing resilience to ACR.

7.
Food Res Int ; 182: 114113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519168

RESUMEN

Soy sauce is a traditional seasoning in Asia and provides a unique flavor to food. However, some harmful Maillard reaction products (MRPs) were inevitably formed during the manufacturing process. Fermentation is a critical step of soy sauce manufacturing and has a significant impact on MRPs formation. Therefore, this study investigated the formation of some characteristic MRPs (e.g., furan, carboxymethyl lysine (CML), 5-hydroxymethylfurfural (5-HMF), α-dicarbonyl compounds) and their correlation with major quality indicators (e.g., free amino acids, reducing sugar, total acid, ammonia nitrogen, total nitrogen, non-salt soluble solids) in low-salt solid-state fermentation soy sauce (LSFSS). The result showed that the levels of furan, CML, and 5-HMF continue to increase during the fermentation process, reaching a maximum after sterilization. Further testing using Person correlation showed that the formation of furan, CML, and 5-HMF in LSFSS was positively correlated with glucose, fructose, α-dicarbonyl compounds, and most of the amino acids, while it was negatively correlated with sucrose and methionine. Among them, the contribution of lysine, valine, isoleucine, leucine, and arginine to furan formation has rarely been reported. Our results provide a good theoretical basis for the control of MRPs during LSFSS fermentation.


Asunto(s)
Alimentos de Soja , Humanos , Fermentación , Lisina , Cloruro de Sodio Dietético , Cloruro de Sodio , Furanos , Nitrógeno
8.
Food Chem Toxicol ; 186: 114582, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460668

RESUMEN

Mycotoxins and thermal processing hazards are common contaminants in various foods and cause severe problems in terms of food safety and health. Combined use of acrylamide (AA) and ochratoxin A (OTA) would result in more significant intestinal toxicity than either toxin alone, but the underlying mechanisms behind this poor outcome remain unclear. Herein, we established the co-culture system of Caco-2/HT29-MTX cells for simulating a real intestinal environment that is more sensitive to AA and OTA, and showed that the combination of AA and OTA could up-regulate permeability of the intestine via increasing LY permeabilization, and decreasing TEER, then induce oxidative stress imbalance (GSH, SOD, MDA, and ROS) and inflammatory system disorder (TNF-α, IL-1ß, IL-10, and IL-6), thereby leading a rapid decline in cell viability. Western blot, PAS- and AB-staining revealed that AA and OTA showed a synergistic effect on the intestine mainly through the disruption of tight junctions (TJs) and a mucus layer. Furthermore, based on correlation analysis, oxidative stress was more relevant to the mucus layer and TJs. Therefore, our findings provide a better evaluation model and a potential mechanism for further determining or preventing the combined toxicity caused by AA and OTA.


Asunto(s)
Acrilamidas , Mucosa Intestinal , Ocratoxinas , Humanos , Células CACO-2 , Técnicas de Cocultivo , Permeabilidad
9.
Food Funct ; 15(8): 4154-4169, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38482844

RESUMEN

The consumption of dietary fiber is beneficial for gut health, but the role of bound polyphenols in dietary fiber has lacked systematic study. The aim of this study is to evaluate the ameliorative effect of mung bean coat dietary fiber (MDF) on DSS-induced ulcerative colitis in mice in the presence and absence of bound polyphenols. Compared to polyphenol-removed MDF (PR-MDF), MDF and formulated-MDF (F-MDF,backfilling polyphenols by the amount of extracted from MDF into PR-MDF) alleviated symptoms such as weight loss and colonic injury in mice with colitis, effectively reduced excessive inflammatory responses, and the bound polyphenols restored the integrity of the intestinal barrier by promoting the expression of tight junction proteins. Additionally, bound polyphenols restored the expression of autophagy-related proteins (mTOR, beclin-1, Atg5 and Atg7) and inhibited the excessive expression of apoptotic-related proteins (Bax, caspase-9, and caspase-3). Furthermore, bound polyphenols could ameliorate the dysregulation of the intestinal microbiota by increasing the abundance of beneficial bacteria and inhibiting the abundance of harmful bacteria. Thus, it can be concluded that the presence of bound polyphenols in MDF plays a key role in the alleviation of DSS-induced ulcerative colitis.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Fibras de la Dieta , Microbioma Gastrointestinal , Polifenoles , Vigna , Animales , Polifenoles/farmacología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Fibras de la Dieta/farmacología , Sulfato de Dextran/efectos adversos , Vigna/química , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Humanos
10.
Food Chem ; 448: 139064, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547705

RESUMEN

This study explored the differences in the in vitro fermentation properties of rice starch (RS) and rice starch-anthocyanins complexes (RS-A). Structural characterization suggested that RS and RS-A complexes showed a V-type crystalline structure. The degree of order (DO) and degree of double helix (DD) values of RS and RS-A complexes were enhanced after fermentation. Moreover, the RS-A complexes could improve the relative abundance of Bacteroidetes, Ruminococcaceae, and up-regulate gut microbiota diversity to maintain gut homeostasis. Relative abundance of potential metabolic pathways, such as energy metabolism, digestion system, and carbohydrate degradation overexpressed in the presence of RS-A complexes. The results demonstrated that the RS-A complexes had slower fermentation rates contributing to the transport of the formed short-chain fatty acid (SCFA) to the end of the colon and that the crystallinity might be a factor influencing the utilization of the starch matrix by the gut microbiota for SCFA formation.


Asunto(s)
Bacterias , Ácidos Grasos Volátiles , Fermentación , Microbioma Gastrointestinal , Oryza , Almidón , Oryza/metabolismo , Oryza/química , Oryza/microbiología , Almidón/metabolismo , Almidón/química , Bacterias/metabolismo , Bacterias/genética , Bacterias/química , Bacterias/clasificación , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/química , Redes y Vías Metabólicas , Humanos
11.
J Agric Food Chem ; 72(13): 7476-7496, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38511260

RESUMEN

Inflammatory bowel disease is a major health problem that can lead to prolonged damage to the digestive system. This study investigated the effects of an exopolysaccharide from genistein-stimulated Monascus purpureus (G-EMP) in a mouse model of colitis to clarify its molecular mechanisms and identified its structures. G-EMP (Mw = 56.4 kDa) was primarily consisted of → 4)-α-D-Galp-(1 →, → 2,6)-α-D-Glcp-(1→ and →2)-ß-D-Manp-(1 → , with one of the branches being α-D-Manp-(1 →. G-EMP intervention reduced the loss of body weight, degree of colonic damage and shortening, disease activity index scores, and histopathology scores, while restoring goblet cell production and oxidative homeostasis, repairing colonic functions, and regulating inflammatory cytokines. RNA sequencing and Western blot analysis indicated that G-EMP exerts anti-inflammatory properties by suppressing the TLR4/MAPK/NF-κB inflammatory signaling pathway. G-EMP modulated the gut microbiota by improving its diversities, elevating the relative abundances of beneficial bacteria, declining the Firmicutes/Bacteroidota value, and regulating the level of short-chain fatty acids (SCFAs). Correlation analysis demonstrated strong links between SCFAs, gut microbiota, and the inflammatory response, indicating the potential of G-EMP to prevent colitis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Monascus , Animales , Ratones , FN-kappa B/genética , Genisteína , Receptor Toll-Like 4/genética , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Colon , Modelos Animales de Enfermedad , Sulfato de Dextran , Ratones Endogámicos C57BL
12.
Food Chem ; 447: 138986, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38489875

RESUMEN

Germination treatment of highland barley enhances its nutritional value while weakening the starch gel properties. This study aims to enhance the characteristics of germinated highland barley starch (GBS) by exploring the synergistic effects of two alkalis (Na2CO3 and NaHCO3) and guar gum (GG) on GBS gel properties. The combined action of alkalis and GG significantly improved the peak viscosity, setback viscosity, and hardness compared with GG alone. The highest G' and G" reached 998 and 204 Pa at 0.4% Na2CO3 addition, which were increased by nearly 44% and 50%, respectively. Fourier-transform infrared spectral analysis revealed that the alkalis strengthened interaction forces, particularly with intensified absorption peaks at 3200-3700 cm-1 and 1550-1750 cm-1. The Na2CO3 and NaHCO3 reduced the spin-spin relaxation time (T2), resulting in a dense starch gel network. This study contributes to enhancing the market application of GBS and offers innovative insights for modifying other starches.


Asunto(s)
Hordeum , Mananos , Gomas de Plantas , Almidón , Almidón/química , Galactanos/química , Viscosidad , Geles/química , Reología
13.
Food Chem ; 445: 138713, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364495

RESUMEN

In the study, a sweet wine koji (YQ-5) was successfully selected to make frozen Chinese sweet rice wine dough (F-CD) for flavor enrichment. Subsequently, the effects of single improver (SI: xanthan gum, potassium carbonate, antifreeze protein, diacetyl tartaric esters of monoglycerides and composite improver (XPADG: Four improvers mixed in proportion) on the texture, rheological properties, microstructure, water status, protein secondary structure, volatile flavor substances and sensory properties of F-CD during frozen storage were investigated. The results indicated that XPADG slowed the increase in freezable water and water mobility in the dough, giving dough the most stable rheological properties and minimizing the damage of freezing to the secondary structure and microstructure of proteins. Besides, GC-QTOF/MS analysis showed that XPADG may facilitate the retention of flavoring substances in F-CD after storage for 6 days. Finally, the sensory evaluation showed that XPADG imparted good sensory properties to the product after freezing for 6 days.


Asunto(s)
Glútenes , Vino , Glútenes/química , Agua/química , Congelación , Pan , China
14.
Food Chem ; 443: 138519, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301549

RESUMEN

A large number of plant metabolites were discovered, but their biosynthetic and metabolic pathways are still largely unknown. However, the spatial distribution of metabolites and their changes in metabolic pathways can be supplemented by mass spectrometry imaging (MSI) techniques. For this purpose, the combination of desorption electrospray ionization (DESI)-MSI and non-targeted metabolomics was used to obtain the spatial distribution information of metabolites in the leaves of Cyclocarya paliurus (Batal.) Iljinskaja (C. paliurus). The sample pretreatment method was optimized to have higher detection sensitivity in DESI. The changes of metabolites in C. paliurus were analyzed in depth with the integration of the spatial distribution information of metabolites. The main pathways for biosynthesis of flavonoid precursor and the effect of changes in compound structure on the spatial distribution were found. Spatial metabolomics can provide more metabolite information and a platform for the in-depth understanding of the biosynthesis and metabolism in plants.


Asunto(s)
Flavonoides , Juglandaceae , Flavonoides/análisis , Metaboloma , Extractos Vegetales/química , Espectrometría de Masas , Hojas de la Planta/química , Juglandaceae/química , Juglandaceae/metabolismo
15.
J Sci Food Agric ; 104(7): 3992-4003, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38323719

RESUMEN

BACKGROUND: Resveratrol (Res) is promising food functional factor with favorable antioxidant and anti-inflammatory properties, although its poor water solubility and low bioavailability limit extensive application. Therefore, in combination with another promising polysaccharide (Mesona chinensis polysaccharides, MCP), Res-loaded food nanocarriers (ResNPs) were developed to increase its water solubility, bioactivity and targeting properties. ResNPs were then applied to alleviate dextran sulfate sodium (DSS)-induced ulcerative colitis. RESULTS: Resveratrol can be well encapsulated in MCP-based nanoparticles in an amorphous state, improving its water solubility. ResNPs showed pH-response controlled release behavior in the gastrointestinal tract and increased the enrichment of Res in the colon. In vivo experiments of ResNPs against DSS-induced ulcerative colitis (UC) revealed that ResNPs significantly improved UC symptoms, modulated intestinal inflammation and down-regulated oxidative stress levels compared to free Res. ResNPs also play an positive role with respect to inhibiting the mitogen-activated protein kinase pathway and promoting the expression of tight junction proteins. In addition, ResNPs improved the species composition and relative abundance of intestinal flora in UC mice, which effectively regulated the balance of intestinal flora and promoted the production of short-chain fatty acids. CONCLUSION: These results suggest that MCP-based nanoparticles can effectively improve the solubility of resveratrol and enhance its in vivo bioactivity. Moreover, the present study also provides a new strategy for the prevention and treatment of UC with food polyphenol. © 2024 Society of Chemical Industry.


Asunto(s)
Colitis Ulcerosa , Colitis , Nanopartículas , Zeína , Ratones , Animales , Resveratrol/farmacología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Nanopartículas/química , Concentración de Iones de Hidrógeno , Agua/farmacología , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon
16.
Foods ; 13(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38254562

RESUMEN

2-Monochloropropane-1, 3-diol (2-MCPD) esters and 3-monochloropropane-1,2-diol (3-MCPD) esters, a class of substances potentially harmful to human health, are usually formed during the refining of vegetable oils under high temperature. The effects of endogenous antioxidants in vegetable oils on the formation of 2- and 3-MCPD esters is still unknown. In this study, the effects of endogenous antioxidants (α-tocopherol, stigmasterol and squalene) on the formation of 2- and 3-MCPD esters in model thermal processing of camellia oil were investigated. The possible formation mechanism of 2- and 3-MCPD esters was also studied through the monitoring of acyloxonium ions, the intermediate ions of 2- and 3-MCPD esters formation, and free radicals by employing infrared spectra and electron paramagnetic resonance (EPR), respectively. The results indicated that the addition of α-tocopherol had either promoting or inhibiting effects on the formation of 2- and 3-MCPD esters, depending on the amount added. Stigmasterol inhibited the formation of 3-MCPD ester and 2-MCPD ester at low concentrations, while promoting their formation at high concentrations. Squalene exhibited a promotional effect on the formation of 3-MCPD ester and 2-MCPD ester, with an increased promotion effect as the amount of squalene added increased. The EPR results suggested that CCl3•, Lipid alkoxyl, N3• and SO3• formed during the processing of camellia oil, which may further mediate the formation of chlorpropanol esters. This study also inferred that squalene promotes the participation of the free radical in chlorpropanol ester formation.

17.
Int J Biol Macromol ; 254(Pt 3): 128053, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37963504

RESUMEN

The sol-gel behavior of tapioca starch (TS) plays a crucial role in the processing and quality control of flour-based products. However, natural tapioca starch has low gel strength and poor viscosity, which tremendously limits its application. To solve this problem, this study investigated the effects of κ-carrageenan (KC), konjac gum (KGM), and Mesona chinensis Benth polysaccharide (MCP) on the pasting behavior, rheological, and structural properties of tapioca starch. KC, KGM, and MCP significantly increased the viscosity of TS. With the exception of high-concentration KGM (0.5 %), all other blending systems showed decrease in setback. This may be attributed to the stronger effect of the high-concentration KC (0.5 %) and MCP (0.5 %) functional groups interacting with starch. KC, KGM, and MCP effectively improved the dynamic modulus (G' and G") of TS gel and were effective in increasing the gel strength and hardness of TS. The FT-IR analysis indicated that the short-range order of TS was mainly influenced by polysaccharides through non-covalent bonding interactions. Furthermore, it was confirmed that three polysaccharides could form dense structures by hydrogen bonding with TS. Similarly, more stable structure and pore size were observed in the microstructure diagram.


Asunto(s)
Lamiaceae , Manihot , Espectroscopía Infrarroja por Transformada de Fourier , Polisacáridos/química , Almidón/química , Carragenina/química , Reología , Lamiaceae/química , Viscosidad , Geles/química
18.
Food Res Int ; 175: 113722, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129038

RESUMEN

Rice by-products are a potential source of various bioactive substances with great processing potential, which are receiving increasing attention. Among them, rice bran is a by-product of rice milling, with high nutritional value and health benefits. Colored rice bran contains a large amount of anthocyanins responsible for color and bioactivities. And anthocyanins are often added to foods as a natural pigment, serving to enhance both the visual appeal and nutritional value. Recent advances in the composition and bioactivities of four common colored rice bran anthocyanins (black, purple, red, and purple red rice) are reviewed in this paper. Rice bran anthocyanins have been confirmed to exhibit biological potential for human health, with their main biological activities being antioxidant, anti-atherosclerosis, anti-cancer, neuroprotective, retinoprotective, immunomodulatory, anti-aging and anti-obesity effects. The structure of anthocyanins determines their biological activities. The anthocyanins composition of rice bran with different colors varied greatly, while that of rice bran with the same color is also slightly different, which is attributed to the rice varieties, growing environment and cropping conditions. However, it remains necessary to conduct further clinical studies to support the health activities of anthocyanins. The present review provides information value for the further development and comprehensive utilization of rice bran anthocyanins.


Asunto(s)
Antocianinas , Oryza , Humanos , Antocianinas/análisis , Oryza/química , Antioxidantes/análisis , Extractos Vegetales/química , Semillas/química
19.
Food Res Int ; 175: 113755, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129053

RESUMEN

This work aimed to illuminate the mechanism of Polygonatum cyrtonema polysaccharide (PCP-80%) triggered immune activation. Results showed that PCP-80% enhanced the protein expression of COX-2 and iNOS, along with increasing the release of NO, ROS, cytokines (TNF-α, IL-6) in RAW264.7 cells. RNA-seq analysis revealed 2160 differentially expressed genes (DEGs) following PCP-80% treatment, comprising 1142 up-regulated and 1018 down-regulated genes. In addition, for investigating possible regulatory mechanisms, the NF-κB, MAPKs, and JAK-STAT signaling pathways were also chosen based on bioinformatics analysis. Furthermore, these findings were further corroborated through Western blot experiments, validating the activation of JAK-STAT (reduction of JAK1 in cells and elevation of p-STAT3 in the nucleus), MAPK (elevation of p-p38, p-ERK1/2, and p-JNK), and NF-κB (elevation of p-IκBα in cells, reduction of cytoplasmic p65, and increase of nuclear content of p-p65) in macrophage activation induced by PCP-80%. Besides, the production of NO and TNF-α was decreased by the inhibitor of the three pathways. In conclusion, these findings provide strong evidence that PCP-80% effectively modulates the immune response of macrophages, with significant involvement of the JAK-STAT, MAPKs, and NF-κB signaling pathways.


Asunto(s)
FN-kappa B , Polygonum , FN-kappa B/genética , FN-kappa B/metabolismo , Polygonum/metabolismo , Factor de Necrosis Tumoral alfa , RNA-Seq , Polisacáridos/farmacología , Inmunidad
20.
Int J Biol Macromol ; 258(Pt 1): 128877, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134995

RESUMEN

Polysaccharides, the major active ingredient and quality control indicator of Polygomatum cyrtonema are in need of elucidation for its in vitro fermentation characteristics. This study aimed to investigate the structural characteristics of the homogeneous Polygomatum cyrtonema polysaccharide (PCP-80 %) and its effects on human intestinal bacteria and short chain fatty acids (SCFAs) production during the in vitro fermentation. The results revealed that PCP-80 % was yielded in 10.44 % and the molecular weight was identified to be 4.1 kDa. PCP-80 % exhibited a smooth, porous, irregular sheet structure and provided good thermal stability. The analysis of Gas chromatograph-mass spectrometer (GC-MS) suggested that PCP-80 % contained six glycosidic bonds, with 2,1-linked-Fruf residues accounted for a largest proportion. Nuclear magnetic resonance (NMR) provided additional evidence that the partial structure of PCP-80 % probably consists of →1)-ß-D-Fruf-(2 â†’ as the main chain, accompanied by side chains dominated by →6)-ß-D-Fruf-(2→. Besides, PCP-80 % promoted the production of SCFAs and increased the relative abundance of beneficial bacteria such as Megamonas, Bifidobacterium and Phascolarctobacterium during in vitro colonic fermentation, which changed the composition of the intestinal microbiota. These findings indicated that Polygomatum cyrtonema polysaccharides were able to modulate the structure and composition of the intestinal bacteria flora and had potential probiotic properties.


Asunto(s)
Microbioma Gastrointestinal , Polygonatum , Humanos , Polygonatum/química , Fermentación , Polisacáridos/química , Bacterias , Ácidos Grasos Volátiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...