Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Nat Cell Biol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783142

RESUMEN

When cells are stressed, DNA from energy-producing mitochondria can leak out and drive inflammatory immune responses if not cleared. Cells employ a quality control system called autophagy to specifically degrade damaged components. We discovered that mitochondrial transcription factor A (TFAM)-a protein that binds mitochondrial DNA (mtDNA)-helps to eliminate leaked mtDNA by interacting with the autophagy protein LC3 through an autolysosomal pathway (we term this nucleoid-phagy). TFAM contains a molecular zip code called the LC3 interacting region (LIR) motif that enables this binding. Although mutating TFAM's LIR motif did not affect its normal mitochondrial functions, more mtDNA accumulated in the cell cytoplasm, activating inflammatory signalling pathways. Thus, TFAM mediates autophagic removal of leaked mtDNA to restrict inflammation. Identifying this mechanism advances understanding of how cells exploit autophagy machinery to selectively target and degrade inflammatory mtDNA. These findings could inform research on diseases involving mitochondrial damage and inflammation.

2.
Biochem Pharmacol ; 223: 116156, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518996

RESUMEN

The skin, lung, and gut are important barrier organs that control how the body reacts to environmental stressors such as ultraviolet (UV) radiation, air pollutants, dietary components, and microorganisms. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that plays an important role in maintaining homeostasis of barrier organs. AhR was initially discovered as a receptor for environmental chemical carcinogens such as polycyclic aromatic hydrocarbons (PAHs). Activation of AhR pathways by PAHs leads to increased DNA damage and mutations which ultimately lead to carcinogenesis. Ongoing evidence reveals an ever-expanding role of AhR. Recently, AhR has been linked to immune systems by the interaction with the development of natural killer (NK) cells, regulatory T (Treg) cells, and T helper 17 (Th17) cells, as well as the production of immunosuppressive cytokines. However, the role of AhR in carcinogenesis is not as straightforward as we initially thought. Although AhR activation has been shown to promote carcinogenesis in some studies, others suggest that it may act as a tumor suppressor. In this review, we aim to explore the role of AhR in the development of cancer that originates from barrier organs. We also examined the preclinical efficacy data of AhR agonists and antagonists on carcinogenesis to determine whether AhR modulation can be a viable option for cancer chemoprevention.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Hidrocarburos Policíclicos Aromáticos , Humanos , Carcinogénesis , Regulación de la Expresión Génica , Neoplasias/prevención & control , Receptores de Hidrocarburo de Aril/metabolismo
3.
Microorganisms ; 12(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38399655

RESUMEN

Clubroot (Plasmodiophora brassicae) is an important soilborne disease that causes severe damage to cruciferous crops in China. This study aims to compare the differences in chemical properties and microbiomes between healthy and clubroot-diseased soils. To reveal the difference, we measured soil chemical properties and microbial communities by sequencing 18S and 16S rRNA amplicons. The available potassium in the diseased soils was higher than in the healthy soils. The fungal diversity in the healthy soils was significantly higher than in the diseased soils. Ascomycota and Proteobacteria were the most dominant fungal phylum and bacteria phylum in all soil samples, respectively. Plant-beneficial microorganisms, such as Chaetomium and Sphingomonas, were more abundant in the healthy soils than in the diseased soils. Co-occurrence network analysis found that the healthy soil networks were more complex and stable than the diseased soils. The link number, network density, and clustering coefficient of the healthy soil networks were higher than those of the diseased soil networks. Our results indicate that the microbial community diversity and network structure of the clubroot-diseased soils were different from those of the healthy soils. This study is of great significance in exploring the biological control strategies of clubroot disease.

4.
Proc Natl Acad Sci U S A ; 121(4): e2315592121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38227652

RESUMEN

γδ T cells are essential for immune defense and modulating physiological processes. While they have the potential to recognize large numbers of antigens through somatic gene rearrangement, the antigens which trigger most γδ T cell response remain unidentified, and the role of antigen recognition in γδ T cell function is contentious. Here, we show that some γδ T cell receptors (TCRs) exhibit polyspecificity, recognizing multiple ligands of diverse molecular nature. These ligands include haptens, metabolites, neurotransmitters, posttranslational modifications, as well as peptides and proteins of microbial and host origin. Polyspecific γδ T cells are enriched among activated cells in naive mice and the responding population in infection. They express diverse TCR sequences, have different functional potentials, and include the innate-like γδ T cells, such as the major IL-17 responders in various pathological/physiological conditions. We demonstrate that encountering their antigenic microbiome metabolite maintains their homeostasis and functional response, indicating that their ability to recognize multiple ligands is essential for their function. Human γδ T cells with similar polyspecificity also respond to various immune challenges. This study demonstrates that polyspecificity is a prevalent feature of γδ T cell antigen recognition, which enables rapid and robust T cell responses to a wide range of challenges, highlighting a unique function of γδ T cells.


Asunto(s)
Antígenos de Grupos Sanguíneos , Receptores de Antígenos de Linfocitos T gamma-delta , Humanos , Ratones , Animales , Antígenos , Haptenos
5.
Plants (Basel) ; 12(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37631159

RESUMEN

Tomatoes (Lycopersicon esculentum) are the most valuable vegetable crop in the world. This study identified the morphological characteristics, vitamin content, etc., from 15 tomato varieties in total, that included five each from the three experimental types, during the commercial ripening period. The results showed that the hardness with peel and the moisture content of tasty tomatoes were 157.81% and 54.50%, and 3.16% and 1.90% lower than those of regular tomatoes and cherry tomatoes, respectively, while the soluble solids were 60.25% and 20.79% higher than those of the latter two types. In addition, the contents of vitamin C, lycopene, fructose, glucose, and total organic acids of tasty tomatoes were higher than those of regular tomatoes and cherry tomatoes. A total of 110 volatile compounds were detected in the 15 tomato varieties. The average volatile compound content of tasty tomatoes was 57.94% higher than that of regular tomatoes and 15.24% higher than that of cherry tomatoes. Twenty of the 34 characteristic tomato aroma components were identified in tasty tomatoes, with fruity and green being the main odor types. Ten characteristic aroma components in regular tomatoes were similar to those of tasty tomatoes; ten types of cherry tomatoes had floral and woody aromas as the main odor types. The flavor sensory score was significantly positively correlated with the content of soluble solids, fructose, glucose, citric acid, fumaric acid, and ß-ionone (p < 0.01), and significantly negatively correlated with water content and firmness without peel. Regular, tasty, and cherry tomatoes were separated using principal component analysis, and the quality of tasty tomatoes was found to be better than cherry tomatoes, followed by regular tomatoes. These results provide valuable information for a comprehensive evaluation of fruit quality among tomato varieties to develop consumer guidelines.

6.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37420794

RESUMEN

Estimating the gamma dose rate at one meter above ground level and determining the distribution of radioactive pollution from aerial radiation monitoring data are the core technical issues of unmanned aerial vehicle nuclear radiation monitoring. In this paper, a reconstruction algorithm of the ground radioactivity distribution based on spectral deconvolution was proposed for the problem of regional surface source radioactivity distribution reconstruction and dose rate estimation. The algorithm estimates unknown radioactive nuclide types and their distributions using spectrum deconvolution and introduces energy windows to improve the accuracy of the deconvolution results, achieving accurate reconstruction of multiple continuous distribution radioactive nuclides and their distributions, as well as dose rate estimation of one meter above ground level. The feasibility and effectiveness of the method were verified through cases of single-nuclide (137Cs) and multi-nuclide (137Cs and 60Co) surface sources by modeling and solving them. The results showed that the cosine similarities between the estimated ground radioactivity distribution and dose rate distribution with the true value were 0.9950 and 0.9965, respectively, which could prove that the proposed reconstruction algorithm would effectively distinguish multiple radioactive nuclides and accurately restore their radioactivity distribution. Finally, the influences of statistical fluctuation levels and the number of energy windows on the deconvolution results were analyzed, showing that the lower the statistical fluctuation level and the more energy window divisions, the better the deconvolution results.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Radioisótopos de Cesio/análisis , Monitoreo de Radiación/métodos , Rayos gamma
7.
Plants (Basel) ; 12(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37447123

RESUMEN

Low temperature combined with low light (LL stress) is a typical environmental stress that limits peppers' productivity, yield, and quality in northwestern China. Glycine betaine (GB), an osmoregulatory substance, has increasingly valuable effects on plant stress resistance. In this study, pepper seedlings were treated with different concentrations of GB under LL stress, and 20 mM of GB was the best treatment. To further explore the mechanism of GB in response to LL stress, four treatments, including CK (normal temperature and light, 28/18 °C, 300 µmol m-2 s-1), CB (normal temperature and light + 20 mM GB), LL (10/5 °C, 100 µmol m-2 s-1), and LB (10/5 °C, 100 µmol m-2 s-1 + 20 mM GB), were investigated in terms of pepper growth, biomass accumulation, photosynthetic capacity, expression levels of encoded proteins Capsb, cell membrane permeability, antioxidant enzyme gene expression and activity, and subcellular localization. The results showed that the pre-spraying of GB under LL stress significantly alleviated the growth inhibition of pepper seedlings; increased plant height by 4.64%; increased root activity by 63.53%; and decreased photoinhibition by increasing the chlorophyll content; upregulating the expression levels of encoded proteins Capsb A, Capsb B, Capsb C, Capsb D, Capsb S, Capsb P1, and Capsb P2 by 30.29%, 36.69%, 18.81%, 30.05%, 9.01%, 6.21%, and 16.45%, respectively; enhancing the fluorescence intensity (OJIP curves), the photochemical efficiency (Fv/Fm, Fv'/Fm'), qP, and NPQ; improving the light energy distribution of PSΠ (Y(II), Y(NPQ), and Y(NO)); and increasing the photochemical reaction fraction and reduced heat dissipation, thereby increasing plant height by 4.64% and shoot bioaccumulation by 13.55%. The pre-spraying of GB under LL stress also upregulated the gene expression of CaSOD, CaPOD, and CaCAT; increased the activity of the ROS-scavenging ability in the pepper leaves; and coordinately increased the SOD activity in the mitochondria, the POD activity in the mitochondria, chloroplasts, and cytosol, and the CAT activity in the cytosol, which improved the LL resistance of the pepper plants by reducing excess H2O2, O2-, MDA, and soluble protein levels in the leaf cells, leading to reduced biological membrane damage. Overall, pre-spraying with GB effectively alleviated the negative effects of LL stress in pepper seedlings.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122971, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37295203

RESUMEN

Surface enhanced Raman scattering (SERS) is a rapid and non-destructive spectral detection technique, and has been widely implemented on trace-level molecule detection. In this work, a hybrid SERS substrate constructed by porous carbon film and silver nanoparticles (PCs/Ag NPs) was developed and then used for imatinib (IMT) detection in bio-environment. The PCs/Ag NPs was prepared by direct carbonizing the gelatin-AgNO3 film in the air atmosphere, and an enhancement factor (EF) of 106 was achieved with R6G as the Raman reporter. Hereafter, this SERS substrate was used as the label-free sensing platform to detect the IMT in the serum, and the experimental results indicate that the substrate is conducive to eliminating the interference from the complex biological molecules in the serum, and the characteristic Raman peaks belonging to IMT (10-4 M) are accurately resolved. Furthermore, the SERS substrate was used to trace the IMT in the whole blood, the trace of ultra-low concertation of IMT is rapidly discovered without any pretreatment. Thus, this work finally suggests that the proposed sensing platform provides a rapid and reliable method for IMT detection in the bio-environment and offers a potential for its application in therapeutic drug monitoring.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Mesilato de Imatinib , Plata/química , Porosidad , Carbono , Espectrometría Raman/métodos
9.
Sensors (Basel) ; 23(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299810

RESUMEN

To overcome the temperature effect of NaI(Tl) detectors for energy spectrometry without additional hardware, a new correction method was put forward based on pulse deconvolution, trapezoidal shaping and amplitude correction, named DTSAC. To verify this method, actual pulses from a NaI(Tl)-PMT detector were measured at various temperatures from -20 °C to 50 °C. Pulse processing and spectrum synthesis showed that the position drift of the 137Cs 662 keV peak was less than 3 keV, and the corresponding resolution at 662 keV of the sum spectra ranged from 6.91% to 10.60% with the trapezoidal width set from 1000 ns to 100 ns. The DTSAC method corrects the temperature effect via pulse processing, and needs no reference peak, reference spectrum or additional circuits. The method solves the problem of correction of pulse shape and pulse amplitude at the same time, and can be used even at a high counting rate.


Asunto(s)
Yoduros , Talio , Temperatura , Talio/química , Sodio
10.
Plants (Basel) ; 12(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37375869

RESUMEN

Nitrate nitrogen (NO3--N) is widely used in the cultivation of the cucumber (Cucumis sativus L.). In fact, in mixed nitrogen forms, partially substituting NO3--N with NH4+-N can promote the absorption and utilization of nitrogen. However, is this still the case when the cucumber seedling is vulnerable to the suboptimal-temperature stress? It remains unclear as to how the uptake and metabolism of ammonium affect the suboptimal-temperature tolerance in cucumber seedlings. In this study, cucumber seedlings were grown under suboptimal temperatures at five ammonium ratios (0NH4+, 25%NH4+, 50%NH4+, 75%NH4+, 100%NH4+) for 14 days. Firstly, increasing ammonium to 50% promoted the growth and root activity and increased protein and proline contents but decreased MDA content in cucumber seedlings. This indicated that increasing ammonium to 50% enhanced the suboptimal-temperature tolerance of cucumber seedlings. Furthermore, increasing ammonium to 50% up-regulated the expression of the nitrogen uptake-transport genes CsNRT1.3, CsNRT1.5 and CsAMT1.1, which promoted the uptake and transport of nitrogen, as well as the up-regulation of the expression of the glutamate cycle genes CsGOGAT-1-2, CsGOGAT-2-1, CsGOGAT-2-2, CsGS-2 and CsGS-3, which promoted the metabolism of nitrogen. Meanwhile, increased ammonium up-regulated the expression of the PM H+-ATP genes CSHA2 and CSHA3 in roots, which maintained nitrogen transport and membranes at a suboptimal temperature. In addition, 13 of 16 genes detected in the study were preferentially expressed in the roots in the increasing ammonium treatments under suboptimal temperatures, which, thus, promoted nitrogen assimilation in roots to the enhance the suboptimal-temperature tolerance of cucumber seedlings.

11.
Sci Rep ; 13(1): 7626, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165051

RESUMEN

Although exogenous glycine betaine (GB) and cycloleucine (Cyc) have been reported to affect animal cell metabolism, their effects on plant growth and development have not been studied extensively. Different concentrations of exogenous glycine betaine (20, 40, and 60 mmol L-1) and cycloleucine (10, 20, and 40 mmol L-1), with 0 mmol L-1 as control, were used to investigate the effects of foliar spraying of betaine and cycloleucine on growth, photosynthesis, chlorophyll fluorescence, Calvin cycle pathway, abaxial leaf burr morphology, endogenous hormones, and amino acid content in eggplant. We found that 40 mmol L-1 glycine betaine had the best effect on plant growth and development; it increased the fresh and dry weight of plants, increased the density of abaxial leaf hairs, increased the net photosynthetic rate and Calvin cycle key enzyme activity of leaves, had an elevating effect on chlorophyll fluorescence parameters, increased endogenous indoleacetic acid (IAA) content and decreased abscisic acid (ABA) content, and increased glutamate, serine, aspartate, and phenylalanine contents. However, cycloleucine significantly inhibited plant growth; plant apical dominance disappeared, plant height and dry and fresh weights decreased significantly, the development of abaxial leaf hairs was hindered, the net photosynthetic rate and Calvin cycle key enzyme activities were inhibited, the endogenous hormones IAA and ABA content decreased, and the conversion and utilization of glutamate, arginine, threonine, and glycine were affected. Combined with the experimental results and plant growth phenotypes, 20 mmol L-1 cycloleucine significantly inhibited plant growth. In conclusion, 40 mmol L-1 glycine betaine and 20 mmol L-1 cycloleucine had different regulatory effects on plant growth and development.


Asunto(s)
Betaína , Solanum melongena , Betaína/farmacología , Betaína/metabolismo , Solanum melongena/metabolismo , Cicloleucina/metabolismo , Cicloleucina/farmacología , Aminoácidos/metabolismo , Fotosíntesis , Ácido Abscísico/metabolismo , Clorofila/metabolismo , Hormonas/metabolismo , Hojas de la Planta/metabolismo
12.
PLoS One ; 18(3): e0283787, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37000779

RESUMEN

Nitrate content is an essential indicator of the quality of vegetables but can cause stress at high levels. This study aimed to elucidate the regulatory mechanisms of nitrate stress tolerance in spinach (Spinacia oleracea L.). We studied the effects of exogenous application of 15 (control), 50, 100, 150, 200, and 250 mM NO3- on spinach growth, physiology, and photosynthesis. The results showed that all the nitrate treatments inhibited the growth of the aerial parts of spinach compared to the control. In contrast, low nitrate levels (50 and 100 mM) promoted spinach root formation, but this effect was inhibited at high levels (150, 200, and 250 mM). Treatment with 150 mM NO3- significantly decreased the root growth vigor. Low nitrate levels increased the chlorophyll content in spinach leaves, whereas high levels had the opposite effect. High nitrate levels also weakened the net photosynthetic rate (Pn), the actual photochemical efficiency of PSII Y(II), and increased non-photochemical quenching (NPQ), reducing photosynthetic performance. Nitrate stress increased the activity of nitrate reductase (NR) and promoted the accumulation of nitrate in spinach leaves, exceeding the health-tolerance limit for nitrate in vegetables, highlighting the necessity of mitigating nitrate stress to ensure food safety. Starting with the 150 mM NO3- treatment, the proline and malondialdehyde content in spinach leaves and roots increased significantly as the nitrate levels increased. Treatment with 150 mM NO3- significantly increased soluble protein and flavonoid contents, while the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were significantly reduced in leaves. However, spinach could resist nitrate stress by regulating the synthesis of osmoregulatory substances such as proline, thus showing some nitrate tolerance. These results provide insights into the physiological regulatory mechanisms of nitrate stress tolerance and its mitigation in spinach, an essential vegetable crop.


Asunto(s)
Nitratos , Spinacia oleracea , Nitratos/farmacología , Spinacia oleracea/metabolismo , Fotosíntesis , Nitrato-Reductasa/metabolismo , Clorofila/farmacología , Prolina/metabolismo , Hojas de la Planta/metabolismo
13.
Plants (Basel) ; 12(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36840277

RESUMEN

This study aimed to explore how exogenous proline induces salinity tolerance in celery. We analyzed the effects of foliar spraying with 0.3 mM proline on celery growth, photosystem, phenolic compounds, and antioxidant system under salt stress (100 mM NaCl), using no salt stress and no proline spraying as control. The results showed that proline-treated plants exhibited a significant increase in plant biomass due to improved growth physiology, supported by gas exchange parameters, chlorophyll fluorescence, and Calvin cycle enzyme activity (Ketosasaccharide-1,5-diphosphate carboxylase and Fructose-1,6-diphosphate aldolase) results. Also, proline spraying significantly suppressed the increase in relative conductivity and malondialdehyde content caused by salt stress, suggesting a reduction in biological membrane damage. Moreover, salt stress resulted in hydrogen peroxide, superoxide anions and 4-coumaric acid accumulation in celery, and their contents were reduced after foliar spraying of proline. Furthermore, proline increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the content of non-enzymatic antioxidants (reduced ascorbic acid, glutathione, caffeic acid, chlorogenic acid, total phenolic acids, and total flavonoids). Additionally, proline increased the activity of key enzymes (ascorbate oxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase) in the ascorbic acid-glutathione cycle, activating it to counteract salt stress. In summary, exogenous proline promoted celery growth under salt stress, enhanced photosynthesis, increased total phenolic acid and flavonoid contents, and improved antioxidant capacity, thereby improving salt tolerance in celery.

14.
Front Plant Sci ; 14: 1323048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38186602

RESUMEN

The content and proportion of sugars and acids in tomato fruit directly affect its flavor quality. Previous studies have shown that 5-aminolevulinic acid (ALA) could promote fruit ripening and improve its aroma quality. In order to explore the effect of ALA on sugar and acid quality during tomato fruit development, 0, 100, and 200 mg L-1 ALA solutions were sprayed on the fruit surface 10 days after pollination of the fourth inflorescence, and the regulation of ALA on sugar, acid metabolism and flavor quality of tomato fruit was analyzed. The results showed that ALA treatment could enhance the activities of acid invertase (AI), neutral invertase (NI), and sucrose synthase (SS), reduce the activity of sucrose phosphate synthase (SPS), up-regulate the expression of SlAI, SlNI and SlSS, change the composition and content of sugar in tomato fruit at three stages, significantly increase the content of sugars in fruit, and promote the accumulation of sugars into flesh. Secondly, ALA treatments increased the activities of phosphoenolpyruvate carboxykinase (PEPC), malic enzyme (ME), and citrate synthase (CS), up-regulated the expression of SlPPC2, SlME1, and SlCS, and reduced the citric acid content at maturity stage, thereby reducing the total organic acid content. In addition, ALA could also increase the number and mass fraction of volatile components in mature tomato fruits. These results indicated that exogenous application of ALA during tomato fruit development could promote the formation of fruit aroma quality and were also conducive to the formation of fruit sugar and acid quality.

15.
Front Microbiol ; 13: 1031624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36478855

RESUMEN

Soil microorganisms play an irreplaceable role in agricultural production, however, an understanding of response of soil microorganisms to slow-release and common fertilizer applications is limited. In this study, different amounts of slow- release fertilizer were used to overwintering Chinese chives growing area in a plastic greenhouse to investigate the effects of on rhizosphere soil physicochemical properties and soil microbial communities (bacteria and fungi) of Chinese chives. The result displayed that application of slow-release fertilizer significantly improved soil nutrients, soil enzyme activity, and soil microbial community structure and diversity compared to conventional fertilizer application. Compared with T1 treatment, the content of total nitrogen (TN) and available phosphorus (AP), and the SU-E activity in the soil of T2 (NPK: 62.8 kg · 667 m-2) increased by 42.58%, 16.67%, and 9.70%, respectively, showing the best effects. In addition, soil bacterial diversity index and soil microbial community structure were improved as indicated by increased relative abundance of each species, such as Byssovorax, Sandaracinus, and Cellvibrio. Oppositely, the both soil fungal diversity and the number of species decreased after fertilizationthe relative abundance of Ascomycota increased in each fertilization treatment detected by ITS sequencing. Further, the relative abundance of pathogenic fungi such as Pezizomycetes, Cantharellales, and Pleosporales decreased in the T2 treatment. Principal Coordinates Analysis (PCoA) showed that both the amount of fertilizer applied and the type of fertilizer applied affected the soil microbial community structure. RDA evidenced that soil bacteria, Proteobacteria and Gemmatimonadetes, were closely correlated with soil AN, SOM, and AK. Acidobacteria were closely correlated with soil pH, TN, and AP. Ascomycota was closely correlated with soil pH and TN. In conclusion, the application of slow-release fertilizers and reduced fertilizer applicationcould improve soil physical and chemical properties as well as soil microbial community structure and diversity, contributing to sustainable soil development. The recommended fertilization rate for overwintering Chinese chives is NPK: 62.8 kg · 667 m-2.

16.
Front Nutr ; 9: 1036843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438749

RESUMEN

5-Aminolevulinic acid (ALA) plays a vital role in promoting plant growth, enhancing stress resistance, and improving fruit yield and quality. In the present study, tomato fruits were harvested at mature green stage and sprayed with 200 mg L-1 ALA on fruit surface. During ripening, the estimation of primary and secondary metabolites, carotenoids, and chlorophyll contents, and the expression levels of key genes involved in their metabolism were carried out. The results showed that ALA significantly promoted carotenoids accumulation by upregulating the gene expression levels of geranylgeranyl diphosphate synthase (GGPPS, encoding geranylgeranyl diphosphate synthase), phytoene synthase 1 (PSY1, encoding phytoene synthase), phytoene desaturase (PDS, encoding phytoene desaturase), and lycopeneß-cyclase (LCYB, encoding lycopene ß-cyclase), whereas chlorophyll content decreased by downregulating the expression levels of Mg-chelatase (CHLH, encoding Mg-chelatase) and protochlorophyllide oxidoreductase (POR, encoding protochlorophyllide oxidoreductase). Besides, the contents of soluble solids, vitamin C, soluble protein, free amino acids, total soluble sugar, organic acid, total phenol, and flavonoid were increased in ALA-treated tomato fruit, but the fruit firmness was decreased. These results indicated that the exogenous ALA could not only promote postharvest tomato fruit ripening but also improve the internal nutritional and flavor quality of tomato fruit.

17.
Front Plant Sci ; 13: 1015745, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388475

RESUMEN

Cadmium (Cd) contamination is a serious global concern that warrants constant attention. Therefore, a hydroponic study was conducted to evaluate the effect of different concentrations (0, 1, 2.5, 5, 10, 15 mg/l) of zinc oxide nanoparticles (ZnONPs) on the Cd content in lettuce (Lactuca sativa L.) under Cd stress conditions. The results showed that Cd stress triggered a decrease in plant biomass, an increase in relative electrolyte conductivity (REC), a decrease in root activity, accumulation of reactive oxygen species (ROS) accumulation, and nutrient imbalance. The application of ZnONPs reduced the toxicity symptoms of lettuce seedlings under Cd stress, with the most pronounced effect being observed 2.5 mg/l. ZnONPs promoted the growth of lettuce under Cd stress, mainly in terms of increase in biomass, chlorophyll content, antioxidant enzyme activity, and proline content, as well as reduction in Cd content, malondialdehyde, and reactive oxygen species (ROS) in plant tissues. ZnONPs also enhanced the uptake of ions associated with photosynthesis, such as iron, manganese, magnesium, and zinc. In addition, ZnONPs increase the amount of lignin in the roots, which blocks or reduces the entry of Cd into plant tissues.

18.
Front Plant Sci ; 13: 998293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247609

RESUMEN

Melatonin (MT) is an important biologically active hormone that plays a vital role in plant growth and development. In particular, it has been investigated for its roles in abiotic stress management. In this study, pepper seedlings were subjected to low-temperature combined with low-light stress (LL) (15/5°C, 100 µmol m-2s-1) prior to a foliar spray of 200mM MT for 168h to investigate the protective role of MT in pepper seedlings. Our results demonstrated that LL stress negatively affected root growth, and accelerated the accumulation of reactive oxygen species (ROS), including H2O2 and O 2 - , changed the osmolytes contents, and antioxidative system. However, these were reversed by exogenous MT application. MT effectively promoted the root growth as indicated by significant increase in root length, surface area, root volume, tips, forks, and crossings. In addition, MT reduced the burst of ROS and MDA contents induced by LL, enhanced the activities of SOD, CAT, POD, APX, DHAR, and MDHAR resulted by upregulated expressions of CaSOD, CaPOD, CaCAT, CaAPX, CaDHAR, and CaMDHAR, and elevated the contents of AsA and GSH, declined DHA and GSSH contents, which prevented membrane lipid peroxidation and protected plants from oxidative damages under LL stress. Furthermore, seedlings treated with MT released high contents of soluble sugar and soluble protein in leave, which might enhance LL tolerance by maintaining substance biosynthesis and maintaining cellular homeostasis resulted by high levels of osmolytes and carbohydrate in the cytosol. Our current findings confirmed the mitigating potential of MT application for LL stress by promoting pepper root growth, improving antioxidative defense system, ascorbate-glutathione cycle, and osmotic adjustment.

19.
PLoS One ; 17(9): e0274319, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36170262

RESUMEN

The ZIP protein (ZRT, the IRT-like protein) is an important metal transporter that transports Zn, Fe, and other divalent metal ions in plants. In this study, we identified 20 ZIP genes in lettuce (Lactuca sativa L.). We used bioinformatics methods and renamed them according to their E value in hmmsearch. We also analyzed their gene structure, chromosomal location, constructed a phylogenetic tree, conserved motifs, performed synonymous analysis and responses to abiotic stresses. The results show that these LsZIP genes have 3-11 exons and were distributed unequally on 8 of the 9 chromosomes in lettuce. Based on phylogenetic analyses, the LsZIP gene family can be divided into three subfamilies, and the LsZIP genes within the same subfamily shared similar gene structure. The LsZIP genes contain 12 Motifs, of which Motif1 to Motif8 are widely distributed in group Ⅰ. Furthermore, the LsZIP gene contains numerous hormones and anti-stress response elements. Real-time quantitative PCR demonstrated that most LsZIP genes is up-regulated under the elemental stress in this experiment, indicating that they are positively regulated. But different elemental stressors can induce the expression of LsZIP gene to varying degrees. The LsZIP genes also change in response to different elemental stresses. The present study serves as a basic foundation for future functional studies on the lettuce ZIP family.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lactuca , Genoma de Planta , Hormonas , Lactuca/genética , Lactuca/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
20.
Front Plant Sci ; 13: 974507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035709

RESUMEN

Trehalose (Tre), which was an osmoprotective or stabilizing molecule, played a protective role against different abiotic stresses in plants and showed remarkable perspectives in salt stress. In this study, the potential role of Tre in improving the resistance to salt stress in tomato plants was investigated. Tomato plants (Micro Tom) were treated with Hoagland nutrient solution (CK), 10 mM Tre (T), 150 mM sodium chloride (NaCl, S), and 10 mM Tre+150 mM NaCl (S+T) for 5 days. Our results showed that foliar application of Tre alleviated the inhibition of tomato plant growth under salt stress. In addition, salt stress decreased the values of net photosynthetic rate (Pn, 85.99%), stomata conductance (gs, 57.3%), and transpiration rate (Tr, 47.97%), but increased that of intercellular carbon dioxide concentration (Ci, 26.25%). However, exogenous application of Tre significantly increased photosynthetic efficiency, increased the activity of Calvin cycle enzymes [ribulose diphosphate carboxylase/oxygenase (Rubisco), fructose-1,6-bisphosphate aldolase (FBA), fructose-1, 6-bisphosphatase (FBPase), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and transketolase (TK)], up-regulated the expression of genes encoding enzymes, induced stomatal opening, and alleviated salt-induced damage to the chloroplast membrane and structure. In the saline environment, photosynthetic electron transport was restricted, resulting the J-I-P phase to decrease. At the same time, the absorption, capture, and transport energies per excited cross-section and per active reaction center decreased, and the dissipation energy increased. Conversely, Tre reversed these values and enhanced the photosystem response to salt stress by protecting the photosynthetic electron transport system. In addition, foliage application with Tre significantly increased the potassium to sodium transport selectivity ratio (S K-Na ) by 16.08%, and increased the levels of other ions to varying degrees. Principal component analysis (PCA) analysis showed that exogenous Tre could change the distribution of elements in different organs and affect the expressions of SlSOS1, SlNHX, SlHKT1.1, SlVHA, and SlHA-A at the transcriptional level under salt stress, thereby maintaining ion homeostasis. This study demonstrated that Tre was involved in the process of mitigating salt stress toxicity in tomato plants and provided specific insights into the effectiveness of Tre in mediating salt tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...