Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Hazard Mater ; 479: 135746, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39244985

RESUMEN

Heavy metal contamination in sediment has become a significant global environmental challenge. Numerous studies have demonstrated the effectiveness of modified biochar to solve heavy metal contamination in sediment. However, the modification process with complex methods and expensive modifiers prevented its large-scale application. In this study, an N self-doped biochar was obtained by pyrolysis of Spirulina sp. (SBC). Meanwhile, the K2CO3 impregnation method was utilized to prepare Spirulina sp. biochar (KSBC), which demonstrated a higher specific surface area (874 m2/g) and richer O, N functional groups. The adsorption capacity of KSBC550-120 for Cu (Ⅱ), Zn (Ⅱ), and Cd (Ⅱ) was 57.9 ± 0.3 mg/g, 43.6 ± 0.7 mg/g, and 63.9 ± 0.6 mg/g, respectively. The adsorption process is primarily governed by chemical processes, mainly through ion exchange, surface complexation, dissolution-precipitation, electrostatic interactions, adsorption-reduction, and cation-π interactions. Moreover, utilizing KSBC550-120 for mixing or capping effectively reduced heavy metal concentrations in both the overlying and pore water of the sediments. 1.0 wt% KSBC550-120 with capping treatment significantly reduced the release of heavy metals from the sediment by 80.3-91.9%. This study provides effective theoretical support for re-utilizing waste algal residues and remediation of the heavy metal-contaminated river and lake sediments using microalgae biochar.

2.
J Dairy Sci ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154730

RESUMEN

Lactococcus lactis, widely used in the food fermentation industry, has developed various ways to regulate acid adaptation in the process of evolution. The investigation into how peptidoglycan (PG) senses and responds to acid stress is an expanding field. Here, we addressed the regulation of murT-gatD genes which are responsible for the amidation of PG D-Glu. We found that lactic acid stress reduced murT-gatD expression, and overexpressing these genes notably decreased acid tolerance of L. lactis NZ9000, possibly due to a reduction in PG's negative charge, facilitating the influx of extracellular protons into the cell. Subsequently, using a combination of DNA pull-down assay and electrophoretic mobility shift assay (EMSA), we identified a novel MarR family regulator, RmaH, as an activator of murT-gatD transcription. Further MEME motif prediction, EMSA verification and fluorescent protein reporter assay showed that RmaH directly bound to the DNA motif 5'-KGVAWWTTTTGCT-3' located in the upstream region of murT-gatD. Beyond the mechanistic investigation of RmaH activation of murT-gatD, this study provides new insight into how peptidoglycan modification is regulated and responds to lactic acid stress.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39178070

RESUMEN

Schizophrenia (SZ) is a common and disabling mental illness, and most patients encounter cognitive deficits. The eye-tracking technology has been increasingly used to characterize cognitive deficits for its reasonable time and economic costs. However, there is no large-scale and publicly available eye movement dataset and benchmark for SZ recognition. To address these issues, we release a large-scale Eye Movement dataset for SZ recognition (EMS), which consists of eye movement data from 104 schizophrenics and 104 healthy controls (HCs) based on the free-viewing paradigm with 100 stimuli. We also conduct the first comprehensive benchmark, which has been absent for a long time in this field, to compare the related 13 psychosis recognition methods using six metrics. Besides, we propose a novel mean-shift-based network (MSNet) for eye movement-based SZ recognition, which elaborately combines the mean shift algorithm with convolution to extract the cluster center as the subject feature. In MSNet, first, a stimulus feature branch (SFB) is adopted to enhance each stimulus feature with similar information from all stimulus features, and then, the cluster center branch (CCB) is utilized to generate the cluster center as subject feature and update it by the mean shift vector. The performance of our MSNet is superior to prior contenders, thus, it can act as a powerful baseline to advance subsequent study. To pave the road in this research field, the EMS dataset, the benchmark results, and the code of MSNet are publicly available at https://github.com/YingjieSong1/EMS.

4.
ACS Appl Mater Interfaces ; 16(30): 39771-39783, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39028897

RESUMEN

We successfully synthesized hybrid MXene-K-CNT composites composed of alkalized two-dimensional (2D) metal carbide and carbon nanotubes (CNTs), which were employed as host materials for lithium-sulfur (Li-S) battery cathodes. The unique three-dimensional (3D) intercalated structure through electrostatic interactions by K+ ions in conjunction with the scaffolding effect provided by CNTs effectively inhibited the self-stacking of MXene nanosheets, resulting in an enhanced specific surface area (SSA) and ion transport capability. Moreover, the addition of CNTs and in situ-grown TiO2 considerably improved the conductivity of the cathode material. K+ ion etching created a more hierarchical porous structure in MXene, which further enhanced the SSA. The 3D framework effectively confined S embedded between nanosheet layers and suppressed volume changes of the cathode composite during charging/discharging processes. This combination of CNTs and alkalized nanosheets functioned as a physical and chemical dual adsorption system for lithium polysulfides (LiPSs). When subjected to a high current at 1.0C, S@MXene-K-0.5CNT with S-loaded of 1.2 mg cm-2 had an initial capacity of 919.6 mAh g-1 and capacity decay rate of merely 0.052% per cycle after 1000 cycles. Moreover, S@MXene-K-0.5CNT maintained good cycling stability even at a high current of up to 5.0C. These impressive results highlight the potential of alkalized 2D MXene nanosheets intercalated with CNTs as highly promising cathode materials for Li-S batteries. The study findings also have prospects for the development of next-generation Li-S batteries with high energy density and prolonged lifespans.

5.
Langmuir ; 40(27): 14173-14187, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38918952

RESUMEN

The titanium carbide (TiC) coating is considered one of the key coating materials to resist erosion wear in oil and gas drilling environments due to its excellent impact and wear resistance. Based on molecular dynamics, the erosion wear resistance of TiC coatings and the pure Fe system in the simulation of nanoindentation, scratch, and particle impact was studied at the microscale. The results indicate that TiC coatings can effectively enhance the load-bearing capacity of the Fe substrate within the critical load range and exhibit low friction characteristics and erosion resistance. However, the protection is lost after the TiC coating cracks, leading to an increase in the tangential force. In addition, when TiC coatings and pure Fe systems exhibit typical erosion characteristics of brittle materials, the TiC coating will significantly reduce the erosion wear of the substrate.

6.
Plants (Basel) ; 13(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611468

RESUMEN

Citrus is the largest fruit crop around the world, while high nitrogen (N) application in citrus orchards is widespread in many countries, which results not only in yield, quality and environmental issues but also slows down the establishment of citrus canopies in newly cultivated orchards. Thus, the objective of this study was to investigate the physiological inhibitory mechanism of excessive N application on the growth of citrus seedlings. A pot experiment with the citrus variety Orah (Orah/Citrus junos) at four N fertilization rates (0, 50, 100, and 400 mg N/kg dry soil, denoted as N0, N50, N100, and N400, respectively) was performed to evaluate the changes of root morphology, biomass, N accumulation, enzyme activities, and so on. The results showed that the N400 application significantly reduced the total biomass (from 14.24 to 6.95 g/Plant), N accumulation (from 0.65 to 0.33 g/Plant) and N use efficiency (92.69%) in citrus seedlings when compared to the N100 treatment. The partial least squares pathway model further showed that the decline of biomass and N accumulation by high N application were largely attributed to the reduction of root growth through direct and indirect effects (the goodness of fit under the model was 0.733.) rather than just soil N transformation and activity of root N uptake. These results are useful to optimize N management through a synergistic N absorption and utilization by citrus seedlings.

7.
Dev Comp Immunol ; 153: 105127, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160871

RESUMEN

Hypoxia-inducible factors -1 (HIF-1) is a crucial transcription factor that regulates the expression of glycolytic genes. Our previous study proved that the Mud crab dicistrovirus-1 (MCDV-1) can induce aerobic glycolysis that favors viral replication in mud crab Scylla paramamosain. However, the role of HIF-1 on key glycolytic genes during the MCDV-1 infection has not been examined. In this study, the intricate interplay between HIF-1 and the key glycolysis enzyme, lactate dehydrogenase (LDH), was investigated after MCDV-1 infection. The expression of LDH was significant increased after MCDV-1 infection. Additionally, the expression of HIF-1α was upregulated following MCDV-1 infection, potentially attributed to the downregulation of prolyl hydroxylase domains 2 expression. Subsequent examination of the SpLDH promoter identified the presence of hypoxia response elements (HREs), serving as binding sites for HIF-1α. Intriguingly, experimental evidence demonstrated that SpHIF-1α actively promotes SpLDH transcription through these HREs. To further elucidate the functional significance of SpHIF-1α, targeted silencing was employed, resulting in a substantial reduction in SpLDH expression, activity, and lactate concentrations in MCDV-1-infected mud crabs. Notably, SpHIF-1α-silenced mud crabs exhibited higher survival rates and lower viral loads in hepatopancreas tissues following MCDV-1 infection. These results highlight the critical role of SpHIF-1α in MCDV-1 pathogenesis by regulating LDH gene dynamics, providing valuable insights into the molecular mechanisms underlying the virus-host interaction.


Asunto(s)
Braquiuros , Dicistroviridae , Animales , Braquiuros/metabolismo , Ácido Láctico/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia
8.
Sci Total Environ ; 882: 163334, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061064

RESUMEN

Antibiotic resistomes in leaf endophytes of vegetables threaten human health through the food chain. However, little is known about the ability of long-term manure fertilization to impact the deep selection of antibiotic resistance genes (ARGs) in leaf endophytes of vegetables planted in different types of soils. Here, by high-throughput quantitative PCR, we characterized the ARGs of leaf endophytes of Chinese cabbage (Brassica pekinensis (Lour.) Rupr.) grown in long-term (14 year) manure-amended acidic, neutral and calcareous soils. In total, 87 ARGs and 4 mobile genetic elements (MGEs) were detected in all the samples. Manure fertilization significantly increased the ARG numbers and normalized abundance in leaf endophytes, especially in acidic soil. Moreover, in acidic soil, manure application also led to a higher increase in the normalized abundance of opportunist and specialist ARGs, and more opportunist and specialist ARGs posed a high risk according to their risk ranks. Random forest analysis revealed that Proteobacteria and MGEs were the major drivers affecting the normalized abundance of opportunist and specialist ARGs in both acidic and neutral soils, respectively. In calcareous soil, Cyanobacteria and Actinobacteria were the most important contributors. Collectively, this study expands our knowledge about the deep selection of plant resistomes under long-term manure application.


Asunto(s)
Antibacterianos , Brassica , Humanos , Antibacterianos/análisis , Genes Bacterianos , Estiércol/análisis , Endófitos , Suelo , Verduras , Microbiología del Suelo
9.
Sci Total Environ ; 855: 158912, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36162577

RESUMEN

Microbial electrolysis cell (MEC) has been existing problems such as poor applicability to real wastewater and lack of cost-effective electrode materials in the practical application of refractory wastewater. A hydrolysis-acidification combined MEC system (HAR-MECs) with four inexpensive stainless-steel and conventional carbon cloth cathodes for the treatment of real textile-dyeing wastewater, which was fully evaluated the technical feasibility in terms of parameter optimization, spectral analysis, succession and cooperative/competition effect of microbial. Results showed that the optimum performance was achieved with a 12 h hydraulic retention time (HRT) and an applied voltage of 0.7 V in the HAR-MEC system with a 100 µm aperture stainless-steel mesh cathode (SSM-100 µm), and the associated optimum BOD5/COD improvement efficiency (74.75 ± 4.32 %) and current density (5.94 ± 0.03 A·m-2) were increased by 30.36 % and 22.36 % compared to a conventional carbon cloth cathode. The optimal system had effective removal of refractory organics and produced small molecules by electrical stimulation. The HAR segment could greatly alleviate the imbalance between electron donors and electron acceptors in the real refractory wastewater and reduce the treatment difficulty of the MEC segment, while the MEC system improved wastewater biodegradability, amplified the positive and specific interactions between degraders, fermenters and electroactive bacteria due to the substrate complexity. The SSM-100 µm-based system constructed by phylogenetic molecular ecological network (pMEN) exhibited moderate complexity and significantly strong positive correlation between electroactive bacteria and fermenters. It is highly feasible to use HAR-MEC with inexpensive stainless-steel cathode for textile-dyeing wastewater treatment.


Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Aguas Residuales/química , Acero Inoxidable , Hidrólisis , Filogenia , Electrólisis/métodos , Electrodos , Carbono/química , Bacterias , Textiles , Concentración de Iones de Hidrógeno
10.
Bioresour Technol ; 368: 128371, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36423756

RESUMEN

The large-scale application of bioelectrochemical coupled anaerobic digestion (BES-AD) is limited by the matching of electrode configuration and the applicability of real wastewater. In this study, a pilot-scale BES-AD system with an effective system volume of 5 m3 and a 1 m3 volume of a carbon fiber brush electrode module was constructed and tested for treatment of the membrane manufacturing wastewater. The results showed that the BOD5/COD of the wastewater was increased from 0.238 to 0.398 when the applied voltage was 0.9 V. The pollutants such as N, N-Dimethylacetamide and glycerol in wastewater were degraded significantly. The microorganisms in the electrode modules were spatially enriched. The fermenters (Norank_f__ML635J-40_aquatic_group, 6.55 %; unclassified_f__Propionibacteriaceae, 5.25 %) and degraders (Corynebacterium, 29.31 %) were mostly enriched at the bottom, while electroactive bacteria (Pseudomonas, 29.39 %, Geobacter, 7.86 %) were mostly enriched at the top. Combined with the economical construction and operation cost ($1708.8/m3 and $0.76/m3) of the BES-AD system.


Asunto(s)
Aguas Residuales , Purificación del Agua , Anaerobiosis , Estudios de Factibilidad , Electrodos
12.
Polymers (Basel) ; 14(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235918

RESUMEN

Molecularly imprinted solid-phase extraction to treat biological samples has attracted considerable attention. Herein, molecularly imprinted polymer (MIP) microspheres with porous structures were prepared by a combined suspension-iniferter polymerization method using capecitabine (CAP) as a template molecule. This material was subsequently used as a solid-phase extraction agent to separate and enrich drug molecules in urine samples. UV analysis revealed that methacrylate (MAA) was an ideal functional monomer, and 1H Nuclear Magnetic Resonance (1H NMR), Ultraviolet (UV), and Fourier transform-infrared (FT-IR) spectroscopic analyses were used to study the interaction forces between MAA and CAP, demonstrating that hydrogen bonding was the primary interaction force. MIPs with outstanding selectivity were successfully prepared, and the analysis of their surface morphology and chemical structure revealed a spherical morphology with small holes distributed across a rough surface. This surface morphology significantly reduced the mass transfer resistance of template molecules, providing an ideal template recognition effect. Using the molecularly imprinted solid-phase extraction method, CAP and the structural analog cytidine (CYT) were pretreated in urine samples and quantified by HPLC. The results showed that CAP and CYT recoveries reached 97.2% and 39.8%, respectively, with a limit of detection of 10.0-50.0 µg·mL-1. This study provides a novel approach to drug molecule pretreatment that can be applied in drug separation and functional materials science fields.

13.
Cogn Neurodyn ; 16(5): 1107-1121, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36237406

RESUMEN

Procrastination behavior is quite ubiquitous, and should warrant cautions to us owing to its significant influences in poor mental health, low subjective well-beings and bad academic performance. However, how to identify this behavioral problem have not yet to be fully elucidated. 1132 participants were recruited as distribution of benchmark. 81 high trait procrastinators (HP) and matched low trait procrastinators (LP) were screened. To address this issue, we have built upon the hybrid brain model by using hierarchical machine learning techniques to classify HP and LP with multi-modalities neuroimaging data (i.e., grey matter volume, fractional anisotropy, static/dynamic amplitude of low frequency fluctuation and static/dynamic degree centrality). Further, we capitalized on the multiple Canonical Correlation Analysis (mCCA) and joint Independent Component Analysis algorithm (mCCA + jICA) to clarify its fusion neural components as well. The hybrid brain model showed high accuracy to discriminate HP and LP (accuracy rate = 87.04%, sensitivity rate = 86.42%, specificity rate = 85.19%). Moreover, results of mCCA + jICA model revealed several joint-discriminative neural independent components (ICs) of this classification, showing wider co-variants of frontoparietal cortex and hippocampus networks. In addition, this study demonstrated three modal-specific discriminative ICs for classification, highlighting the temporal variants of brain local and global natures in ventromedial prefrontal cortex (vmPFC) and PHC in HP. To sum-up, this research developed a hybrid brain model to identify trait procrastination with high accuracy, and further revealed the neural hallmarks of this trait by integrating neuroimaging fusion data. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-021-09765-z.

15.
Eur J Cancer ; 175: 86-98, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36096041

RESUMEN

INTRODUCTION: Glioma is the most common and most invasive primary central nervous system tumour, and it is urgent to develop new specific therapeutic targets. Studies have confirmed that epithelial-derived tumour cells promote tumour cell proliferation and metastasis by secreting a large number of immunoglobulins (Igs), but the role of tumour-derived Igs in glioma has never been reported. METHODS: The Gene Expression Profiling Interactive Analysis and Chinese Glioma Genome Atlas databases were used to analyse the Ig transcription and its correlation with the prognosis of patients with glioma. Immunohistochemistry and immunofluorescence were used to detect the protein expression of IgG and IgM in the glioma tissues of patients and glioma cell lines. When IgG was knocked down by small interfering RNA or knocked out by CRISPR-Cas9, the function of proliferation and migration of glioma cells were analysed by CCK-8, clone formation, wound healing, and transwell assays. Changes in proteins and their phosphorylation in signalling pathways were detected by western blotting. The nude mouse subcutaneous tumour-bearing model was established to analyse the effect of IgG in vivo. RESULTS: The transcriptional level of IgG was pretty high in glioma tissues and was positively correlated with high WHO grade, recurrence, and poor prognosis. The expression of IgG and IgM was found in tumour tissues and human glioma cell lines U87 and U251, and the main expression form was secreted. Decreased IgG inhibited the proliferation and migration of glioma cells. Knockout or knockdown of IgG downregulated the phosphorylation of the key molecules in the MAPK and PI3K/Akt pathway through the HGF/SF-Met or FAK/Src pathway. In vivo tumourigenesis mouse model confirmed that reduced IgG expression inhibited glioma growth. CONCLUSION: Ig was expressed in glioma tissues and cell lines, and a high expression level predicted a poor prognosis of patients. Glioma-derived IgG promoted glioma cell proliferation and migration through the HGF/SF-Met or FAK/Src pathway.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Inmunoglobulina M/genética , Inmunoglobulina M/metabolismo , Ratones , Ratones Noqueados , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo
16.
Bioresour Technol ; 363: 127749, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35940326

RESUMEN

Anaerobic ammonium oxidation (Anammox) granular sludge (AnGS) has poor strength and is prone to disintegration under complex environmental conditions, especially in the presence of complex organic carbon, which renders the Anammox process instable. Herein, with a mixture of landfill leachate and domestic sewage as wastewater, the effect on the properties of AnGS with two small particle size (0.1-0.2 mm) biochars (coconut and peach biochars) addition were investigated at different COD concentrations (150 mg·L-1, 200 mg·L-1, and 250 mg·L-1), as well as at different BOD/TN (B/N) (0.3 and 0.5). Results showed that the nitrogen removal efficiencies decreased from 89 % to 72 % as the COD concentration increased by 100 mg·L-1, while peach biochar reactor had better nitrogen removal performance. Excessive organic carbon supply inhibits AnAOB proliferation and B/N had the most significant effect on AnAOB (p < 0.05). The Polymerase Chain Reaction (PCR) indicated peach biochar reactor get higher activity of anammox-related functional genes (hzsA, hdh).


Asunto(s)
Compuestos de Amonio , Microbiota , Contaminantes Químicos del Agua , Anaerobiosis , Reactores Biológicos , Carbono , Carbón Orgánico , Desnitrificación , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales
17.
J Environ Manage ; 321: 115855, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35994962

RESUMEN

Nutrients and heavy metals (HM) in the sediment have an impact on microbial diversity and community structure. In this study, the distribution characteristics of nutrients, HM, and microbial community in the sediments along the Longsha River, a tributary of the Pearl River (or Zhu Jiang), China were investigated by analyzing samples from 11 sites. On the basis of the HM-contamination level, the 11 sampling sites were divided into three groups to explore the changes in microbial communities at different ecological risk levels. Results indicated that nutrient concentrations were higher near farmlands and residential lands, while the ecological risk of HM at the 11 sampling sites was from high to low as S10 > S2 > S9 > S6 > S11 > S7 > S5 > S8 > S3 > S4 > S1. Among these HM, Cu, Cr, and Ni had intense ecological risks. In addition, the results of Variance Partitioning Analysis (VPA) revealed a higher contribution of HM (35.93%) to microbial community variation than nutrients (12.08%) and pH (4.08%). Furthermore, the HM-tolerant microbial taxa (Clostridium_sensu_stricto_1, Romboutsia, norank_o__Gaiellales, and etc.) were the dominant genera, and they were more dynamic around industrial lands, while microbes involved in the C, N, and S cycles (e.g., Smithella, Thiobacillus, Dechloromonas, Bacter oidetes_vadinHA17, and Syntrophorhabdus) were inhibited by HM, while their abundance was lower near industrial lands and highway but higher around residential lands. A three-unit monitoring program of land-use types, pollutants, and microbial communities was proposed. These results provide a new perspective on the control of riparian land-use types based on contaminants and microbes, and different microbial community response patterns may provide a reference for contaminant control in sediments with intensive industrial activities.


Asunto(s)
Metales Pesados , Microbiota , China , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Metales Pesados/análisis , Nutrientes , Medición de Riesgo , Ríos/química
18.
ACS Appl Mater Interfaces ; 14(30): 34627-34636, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35862430

RESUMEN

Renewable electricity from splitting water to produce hydrogen is a favorable technology to achieve carbon neutrality, but slow anodic oxygen evolution reaction (OER) kinetics limits its large-scale commercialization. Electron spin polarization and increasing the reaction temperature are considered as potential ways to promote alkaline OER. Here, it is reported that in the alkaline OER process under an AC magnetic field, a ferromagnetic ordered electrocatalyst can simultaneously act as a heater and a spin polarizer to achieve significant OER enhancement at a low current density. Moreover, its effect obviously precedes antiferromagnetic, ferrimagnetic, and diamagnetic electrocatalysts. In particular, the noncorrected overpotential of the ferromagnetic electrocatalyst Co at 10 mA cm-2 is reduced by a maximum of 36.6% to 243 mV at 4.320 mT. It is found that the magnetic heating effect is immediate, and more importantly, it is localized and hardly affects the temperature of the entire electrolytic cell. In addition, the spin pinning effect established on the ferromagnetic/paramagnetic interface generated during the reconstruction of the ferromagnetic electrocatalyst expands the ferromagnetic order of the paramagnetic layer. Also, the introduction of an external magnetic field further increases the orderly arrangement of spins, thereby promoting OER. This work provides a reference for the design of high-performance OER electrocatalysts under a magnetic field.

19.
Comput Biol Med ; 146: 105520, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35537220

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is cancer that originates from the liver's secondary ductal epithelium or branch. Due to the lack of early-stage clinical symptoms and very high mortality, the 5-year postoperative survival rate is only about 35%. A critical step to improve patients' survival is accurately predicting their survival status and giving appropriate treatment. The tumor microenvironment of ICC is the immediate environment on which the tumor cell growth depends. The differentiation of tumor glands, the stroma status, and the tumor-infiltrating lymphocytes in such environments are strictly related to the tumor progress. It is crucial to develop a computerized system for characterizing the tumor environment. This work aims to develop the quantitative histomorphological features that describe lymphocyte density distribution at the cell level and the different components at the tumor's tissue level in H&E-stained whole slide images (WSIs). The goal is to explore whether these features could stratify patients' survival. This study comprised of 127 patients diagnosed with ICC after surgery, where 78 cases were randomly chosen as the modeling set, and the rest of the 49 cases were testing set. Deep learning-based models were developed for tissue segmentation and lymphocyte detection in the WSIs. A total of 107-dimensional features, including different type of graph features on the WSIs were extracted by exploring the histomorphological patterns of these identified tumor tissue and lymphocytes. The top 3 discriminative features were chosen with the mRMR algorithm via 5-fold cross-validation to predict the patient's survival. The model's performance was evaluated on the independent testing set, which achieved an AUC of 0.6818 and the log-rank test p-value of 0.03. The Cox multivariable test was used to control the TNM staging, γ-Glutamytransferase, and the Peritumoral Glisson's Sheath Invasion. It showed that our model could independently predict survival risk with a p-value of 0.048 and HR (95% confidence interval) of 2.90 (1.01-8.32). These results indicated that the composition in tissue-level and global arrangement of lymphocytes in the cell-level could distinguish ICC patients' survival risk.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/diagnóstico por imagen , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Conductos Biliares Intrahepáticos/cirugía , Colangiocarcinoma/diagnóstico por imagen , Colangiocarcinoma/patología , Humanos , Estadificación de Neoplasias , Microambiente Tumoral
20.
Fish Shellfish Immunol ; 124: 39-46, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367375

RESUMEN

Phosphofructokinase (PFK), the key enzyme of glycolysis, can catalyze the irreversible transphosphorylation of fructose-6-phosphate forming fructose-1, 6-biphosphate. In the present study, a PFK gene from the mud crab Scylla paramamosain, named SpPFK, was cloned and characterized. The full length of SpPFK contained a 5'untranslated region (UTR) of 249 bp, an open reading frame of 2,859 bp, and a 3'UTR of 1,248 bp. The mRNA of SpPFK was highly expressed in the gill, followed by the hemocytes and muscle. The expression of SpPFK was significantly up-regulated after mud crab dicistrovirus-1 (MCDV-1) infection. Knocking down SpPFK in vivo by RNA interference significantly reduced the expression of lactate dehydrogenase after MCDV-1 infection. Furthermore, silencing of SpPFK in vivo increased the survival rate of mud crabs and decreased the MCDV-1 copies in the gill and hepatopancreas after MCDV-1 infection. All these results suggested that SpPFK could play an important role in the process of MCDV-1 proliferation in mud crab.


Asunto(s)
Braquiuros , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Braquiuros/genética , Braquiuros/metabolismo , Proliferación Celular , Fosfofructoquinasas/genética , Fosfofructoquinasas/metabolismo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA