Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Angew Chem Int Ed Engl ; : e202412867, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128882

RESUMEN

Red phosphorus anode, attributed to its high specific capacity of 2596 mAh g-1, is expected to improve the energy density of Na-ion batteries. However, the P anode currently is unsatisfactory for practical usage due to the large volume expansion beyond 300%, which brings out uncontrolled brittle failure. To address this challenge, we here design a nacre-like phosphorus anode by resilient graphene oxide staggered together. The staggered structure simultaneously offers mechanical strength and interwoven toughness. Finite element modeling reveals that the sodiation stress from P nanoparticles will be transferred into interlayer pillars as the elastic medium to release sodiation stress. The prepared anode achieves an ultrahigh areal capacity of 13 mAh cm-2 at a mass loading of 5.8 mg cm-2. Notably, the volume change of the anode is limited to approximately 8.2% at full sodiation, significantly lower than that of the traditional phosphorus electrodes.

2.
Virulence ; 15(1): 2383559, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39066684

RESUMEN

A variety of animals can be infected by encephalomyocarditis virus (EMCV). EMCV is the established causative agent of myocarditis and encephalitis in some animals. EMCV causes high fatality in suckling and weaning piglets, making pigs the most susceptible domestic animal species. Importantly, EMCV has zoonotic potential to infect the human population. The ability of the pathogen to avoid and undermine the initial defence mechanism of the host contributes to its virulence and pathogenicity. A large body of literature highlights the intricate strategies employed by EMCV to escape the innate immune machinery to suit its "pathogenic needs." Here, we also provide examples on how EMCV interacts with certain host proteins to dampen the infection process. Hence, this concise review aims to summarize these findings in a compendium of decades of research on this exciting yet underappreciated topic.


Asunto(s)
Infecciones por Cardiovirus , Virus de la Encefalomiocarditis , Interacciones Huésped-Patógeno , Inmunidad Innata , Virus de la Encefalomiocarditis/patogenicidad , Virus de la Encefalomiocarditis/inmunología , Virus de la Encefalomiocarditis/fisiología , Animales , Infecciones por Cardiovirus/virología , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/veterinaria , Porcinos , Humanos , Interacciones Huésped-Patógeno/inmunología , Miocarditis/virología , Miocarditis/inmunología , Virulencia , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología
3.
BMJ Open ; 14(7): e086415, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39067882

RESUMEN

INTRODUCTION: Tracheostomy is a common emergency procedure for critically ill patients to secure their airway. The speaking valve is a one-way ventilation valve that is attached to the end of the tracheostomy tube to help the patient remodel subglottic pressure. However, the efficacy and safety of speaking valves in adult patients with tracheostomy remain controversial. The purpose of this protocol is to describe and evaluate the effectiveness, safety and impact on the quality of life of speaking valves in adult patients with tracheostomy. METHODS AND ANALYSIS: We will search four English databases (PubMed, Embase, Cochrane Library and Web of Science), grey literature websites and reference lists of original studies to screen for studies that might meet the criteria. The two authors will independently screen the literature, extract data and assess the quality and risk of bias of the included studies. The primary outcomes will focus on the patients' swallowing function, vocalisation and quality of life. We will use a fixed effects model or a random effects model based on heterogeneity testing or a descriptive analysis only. The quality of evidence on the effects of interventions will be assessed using the Grading of Recommendations Assessment, Development, and Evaluation. ETHICS AND DISSEMINATION: This study is based on the literature in the database and does not require the approval of the ethics committee. The results will be disseminated through a peer-reviewed journal and conferences. PROSPERO REGISTRATION NUMBER: CRD42024502906.


Asunto(s)
Metaanálisis como Asunto , Calidad de Vida , Proyectos de Investigación , Revisiones Sistemáticas como Asunto , Traqueostomía , Adulto , Humanos , Enfermedad Crítica , Traqueostomía/instrumentación
4.
Adv Mater ; : e2406905, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39081118

RESUMEN

Lithium carbon dioxide (Li-CO2) batteries, noted for their high discharge voltage of approximately 2.8 V and substantial theoretical specific energy of 1876 Wh kg-1, represent a promising avenue for new energy sources and CO2 emission reduction. However, the practical application of these batteries faces significant hurdles, particularly at high current densities and over extended cycle lives, due to their complex reaction mechanisms and slow kinetics. This paper delves into the recent advancements in cathode catalysts for Li-CO2 batteries, with a specific focus on the designing philosophy from composition, geometry, and homogeneity of the catalysts to the proper test conditions and real-world application. It surveys the possible catalytic mechanisms, giving readers a brief introduction of how the energy is stored and released as well as the critical exploration of the relationship between material properties and performances. Specifically, optimization and standardization of test conditions for Li-CO2 battery research is highlighted to enhance data comparability, which is also critical to facilitate the practical application of Li-CO2 batteries. This review aims to bring up inspiration from previous work to advance the design of more effective and sustainable cathode catalysts, tailored to meet the practical demands of Li-CO2 batteries.

5.
Front Biosci (Landmark Ed) ; 29(7): 273, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39082353

RESUMEN

BACKGROUND: Understanding the mechanisms through which interferon (IFN) signaling is negatively regulated is crucial for preserving the equilibrium of innate immune reactions, as the innate immune system functions, such as the original barrier, combat threats to the host. Although the function of the encephalomyocarditis virus (EMCV) viral proteins in antagonizing innate immunity has been related to earlier studies, the precise mechanism underlying the role of viral protein 3 (VP3) in type I IFN has yet to be fully illuminated. METHODS: VP3 expression and many other adaptor molecules belonging to type I IFN pathway expression levels were evaluated using Western blotting. The IFN and other antiviral genes, such as interferon-stimulated genes (ISGs) 15 and 56, were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). A 50% tissue culture infectious dose (TCID50) assay was utilized to explore the effect of VP3 on EMCV proliferation in human embryonic kidney (HEK293) cells. Co-immunoprecipitation (Co-IP) assays and confocal microscope analysis were used to investigate the underlying mechanisms mediated by VP3. RESULTS: We discovered that the VP3 of EMCV acts as a suppressor of innate immune reactions. Increased levels of VP3 enhance viral reproduction through modulation of innate immune signaling pathways and suppression of antiviral responses. Additional information indicated that during viral infection, the VP3 of EMCV enhances autophagy and interacts specifically with mitochondrial antiviral signaling protein (MAVS), leading to its degradation in an autophagy pathway that relies on p62. CONCLUSIONS: Our findings showed that EMCV developed a tactic to combat host antiviral defenses by using autophagy to break down a protein that controls the innate immune response following a viral infection of the host. Notably, VP3 plays an important role in this process. Overall, these discoveries may provide a novel therapeutic target for EMCV.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Autofagia , Virus de la Encefalomiocarditis , Interferón Tipo I , Transducción de Señal , Humanos , Virus de la Encefalomiocarditis/inmunología , Virus de la Encefalomiocarditis/metabolismo , Autofagia/inmunología , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Células HEK293 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Inmunidad Innata , Proteolisis
6.
Virol Sin ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823782

RESUMEN

Herpesviruses antagonize host antiviral responses through a myriad of molecular strategies culminating in the death of the host cells. Pseudorabies virus (PRV) is a significant veterinary pathogen in pigs, causing neurological sequalae that ultimately lead to the animal's demise. PRV is known to trigger apoptotic cell death during the late stages of infection. The virion host shutdown protein (VHS) encoded by UL41 plays a crucial role in the PRV infection process. In this study, we demonstrate that UL41 inhibits PRV-induced activation of inflammatory cytokine and negatively regulates the cGAS-STING-mediated antiviral activity by targeting IRF3, thereby inhibiting the translocation and phosphorylation of IRF3. Notably, mutating the conserved amino acid sites (E192, D194, and D195) in the RNase domain of UL41 or knocking down UL41 inhibits the immune evasion of PRV, suggesting that UL41 may play a crucial role in PRV's evasion of the host immune response during infection. These results enhance our understanding of how PRV structural proteins assist the virus in evading the host immune response.

7.
Virol J ; 21(1): 107, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720392

RESUMEN

Natural immunity is the first defense line of the host immune system, which plays a significant role in combating foreign pathogenic microorganisms. The IFN-ß (interferon-beta) signaling pathway, being a typical example of innate immunity, plays a vital function. This study aimed to elucidate the function of pseudorabies virus (PRV) UL38 protein (unique long region 38) in suppressing the activation of the IFN-ß signaling pathway. The findings from our study indicate that the PRV UL38 protein effectively hampers the activation of IFN-ß by poly (dA: dT) (poly(deoxyadenylic-deoxythymidylic)) and 2'3'-cGAMP (2'-3'-cyclic GMP-AMP). Furthermore, UL38 exhibits spatial co-localization with STING (stimulator of interferon genes) and effectively hinders STING dimerization. Subsequently, STING was downgraded to suppress the production of IFN-ß and ISGs (interferon stimulated genes). Immunoprecipitation analysis revealed that the interaction between UL38 and STING, which subsequently initiated the degradation of STING via selective autophagy mediated by TOLLIP (toll interacting protein). To summarize, this research elucidates the function of UL38 in counteracting the cGAS (cGAMP synthase)-STING-induced IFN-ß pathway. The PRV UL38 protein may attenuate the activation of IFN-ß as a means of regulating the virus's persistence in the host.


Asunto(s)
Autofagia , Herpesvirus Suido 1 , Interferón beta , Proteínas de la Membrana , Nucleotidiltransferasas , Transducción de Señal , Animales , Humanos , Línea Celular , Células HEK293 , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata , Interferón beta/metabolismo , Interferón beta/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Seudorrabia/virología , Seudorrabia/metabolismo , Seudorrabia/inmunología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Porcinos , Mesocricetus
8.
Nat Commun ; 15(1): 4454, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38789429

RESUMEN

The advancement of Li-metal batteries is significantly impeded by the presence of unstable solid electrolyte interphase and Li dendrites upon cycling. Herein, we present an innovative approach to address these issues through the synergetic regulation of solid electrolyte interphase mechanics and Li crystallography using yttrium fluoride/polymethyl methacrylate composite layer. Specifically, we demonstrate the in-situ generation of Y-doped lithium metal through the reaction of composite layer with Li metal, which reduces the surface energy of the (200) plane, and tunes the preferential crystallographic orientation to (200) plane from conventional (110) plane during Li plating. These changes effectively passivate Li metal, thereby significantly reducing undesired side reactions between Li and electrolytes by 4 times. Meanwhile, the composite layer with suitable modulus (~1.02 GPa) can enhance mechanical stability and maintain structural stability of SEI. Consequently, a 4.2 Ah pouch cell with high energy density of 468 Wh kg-1 and remarkable capacity stability of 0.08% decay/cycle is demonstrated under harsh condition, such as high-areal-capacity cathode (6 mAh cm-2), lean electrolyte (1.98 g Ah-1), and high current density (3 mA cm-2). Our findings highlight the potential of reactive composite layer as a promising strategy for the development of stable Li-metal batteries.

9.
mSphere ; 9(6): e0023624, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38757961

RESUMEN

Mammalian orthoreovirus (MRV) outer capsid protein σ3 is a multifunctional protein containing a double-stranded RNA-binding domain, which facilitates viral entry and assembly. We reasoned that σ3 has an innate immune evasion function. Here, we show that σ3 protein localizes in the mitochondria and interacts with mitochondrial antiviral signaling protein (MAVS) to activate the intrinsic mitochondria-mediated apoptotic pathway. Consequently, σ3 protein promotes the degradation of MAVS through the intrinsic caspase-9/caspase-3 apoptotic pathway. Moreover, σ3 protein can also inhibit the expression of the components of the RNA-sensing retinoic acid-inducible gene (RIG)-like receptor (RLR) signaling pathway to block antiviral type I interferon responses. Mechanistically, σ3 inhibits RIG-I and melanoma differentiation-associated gene 5 expression is independent of its inhibitory effect on MAVS. Overall, we demonstrate that the MRV σ3 protein plays a vital role in negatively regulating the RLR signaling pathway to inhibit antiviral responses. This enables MRV to evade host defenses to facilitate its own replication providing a target for the development of effective antiviral drugs against MRV. IMPORTANCE: Mammalian orthoreovirus (MRV) is an important zoonotic pathogen, but the regulatory role of its viral proteins in retinoic acid-inducible gene-like receptor (RLR)-mediated antiviral responses is still poorly understood. Herein, we show that MRV σ3 protein co-localizes with mitochondrial antiviral signaling protein (MAVS) in the mitochondria and promotes the mitochondria-mediated intrinsic apoptotic pathway to cleave and consequently degrade MAVS. Furthermore, tryptophan at position 133 of σ3 protein plays a key role in the degradation of MAVS. Importantly, we show that MRV outer capsid protein σ3 is a key factor in antagonizing RLR-mediated antiviral responses, providing evidence to better unravel the infection and transmission mechanisms of MRV.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de la Cápside , Orthoreovirus de los Mamíferos , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Humanos , Orthoreovirus de los Mamíferos/genética , Animales , Apoptosis , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/genética , Mitocondrias/metabolismo , Inmunidad Innata , Ratones , Evasión Inmune , Células HEK293 , Receptores Inmunológicos/metabolismo , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Línea Celular , Interacciones Huésped-Patógeno
10.
BMC Nurs ; 23(1): 289, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684972

RESUMEN

BACKGROUND: Delirium is an acute mental state associated with poor outcomes. The incidence of delirium is high, especially in the paediatric intensive care unit (PICU). It is important for staff, particularly nurses, to understand delirium and implement interventions to prevent it. We performed a survey with the aim of evaluating and analysing the factors influencing the knowledge, attitudes and behaviour of PICU nurses towards delirium. METHODS: This cross-sectional descriptive study included 215 PICU nurses in 6 PICUs from five teaching hospitals in Sichuan Province, China. An online survey about the knowledge, attitudes and practices related to delirium care was conducted among PICU nurses used a self-made and validated questionnaire. The data were analysed using descriptive statistics; differences between groups were compared using t tests, ANOVA and rank-sum tests. Variables with a significance level of 0.05 in the univariate analysis were entered into the multivariable regression analysis to identify predictors. RESULTS: Only 14.4% of the nurses had a good understanding of delirium, and 40.9% had received relevant training. The mean knowledge score was 9.01 ± 3.86, and the overall passing rate of knowledge was 49.8%. The mean attitude and behaviour scores were 40.95 ± 5.62 and 40.33 ± 8.01, respectively. Among the hospitals, different delirium assessments for children and specific training were performed, explaining approximately 10% of the variability in knowledge scores (F = 6.152), approximately 10% of the variability in attitude/belief scores (F = 5.908), and approximately 17% of the variability in practice scores (F = 10.767). CONCLUSIONS: PICU nurses have poor knowledge of delirium, particularly regarding its clinical manifestations, influencing factors and medications used, and they have adequate attitudes and confidence and good behaviour regarding delirium in children. To better prevent delirium, we suggest that PICU departments routinely assess delirium and conduct delirium training for nurses. TRIAL REGISTRATION: Not applicable.

11.
Aging (Albany NY) ; 16(7): 6273-6289, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568100

RESUMEN

OBJECTIVE: The purpose of this study was to explore the therapeutic characteristics of mesenchymal stem cells generated from human umbilical cord (hUC-MSCs) when utilized in conjunction with auto-crosslinked hyaluronic acid gel (HA-gel) for the management of intrauterine adhesion (IUA). The goal was to see how this novel therapy could enhance healing and improve outcomes for IUA patients. METHODS: In this study, models of intrauterine adhesion (IUA) were established in Sprague-Dawley (SD) rats, which were then organized and divided into hUC-MSCs groups. The groups involved: hUC-MSCs/HA-gel group, control group, and HA-gel group. Following treatment, the researchers examined the uterine cavities and performed detailed analyses of the endometrial tissues to determine the effectiveness of the interventions. RESULTS: The results indicated that in comparison with to the control group, both HA-gel, hUC-MSCs, and hUC-MSCs/HA-gel groups showed partial repair of IUA. However, in a more notable fashion transplantation of hUC-MSCs/HA-gel complex demonstrated significant dual repair effects. Significant outcomes were observed in the group treated with hUC-MSCs and HA-gel, they showed thicker endometrial layers, less fibrotic tissue, and a higher number of endometrial glands. This treatment strategy also resulted in a significant improvement in fertility restoration, indicating a profound therapeutic effect. CONCLUSIONS: The findings of this study suggest that both HA-gel, hUC-MSCs, and hUC-MSCs/HA-gel complexes have the potential for partial repair of IUA and fertility restoration caused by endometrium mechanical injury. Nonetheless, the transplantation of the hUC-MSCs/HA-gel complex displayed exceptional dual healing effects, combining effective anti-adhesive properties with endometrial regeneration stimuli.


Asunto(s)
Ácido Hialurónico , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Cordón Umbilical , Enfermedades Uterinas , Ácido Hialurónico/farmacología , Ácido Hialurónico/química , Femenino , Animales , Trasplante de Células Madre Mesenquimatosas/métodos , Humanos , Ratas , Adherencias Tisulares , Cordón Umbilical/citología , Enfermedades Uterinas/terapia , Geles , Endometrio/efectos de los fármacos , Endometrio/citología , Modelos Animales de Enfermedad
12.
Mol Immunol ; 170: 131-143, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663254

RESUMEN

Mammalian reovirus (MRV) is a non-enveloped, gene segmented double-stranded RNA (dsRNA) virus. It is an important zoonotic pathogen that infects many mammals and vertebrates that act as natural hosts and causes respiratory and digestive tract diseases. Studies have reported that RIG-I and MDA5 in the innate immune cytoplasmic RNA-sensing RIG-like receptor (RLR) signaling pathway can recognize dsRNA from MRV and promote antiviral type I interferon (IFN) responses. However, the mechanism by which many MRV-encoded proteins evade the host innate immune response remains unclear. Here, we show that exogenous µ1 protein promoted the proliferation of MRV in vitro, while knockdown of MRV µ1 protein expression by shRNA could impair MRV proliferation. Specifically, µ1 protein inhibited MRV or poly(I:C)-induced IFN-ß expression, and attenuated RIG-I/MDA5-mediated signaling axis transduction during MRV infection. Importantly, we found that µ1 protein significantly decreased IFN-ß mRNA expression induced by MDA5, RIG-I, MAVS, TBK1, IRF3(5D), and degraded the protein expression of exogenous MDA5, RIG-I, MAVS, TBK1 and IRF3 via the proteasomal and lysosomal pathways. Additionally, we show that µ1 protein can physically interact with MDA5, RIG-I, MAVS, TBK1, and IRF3 and attenuate the RIG-I/MDA5-mediated signaling cascades by blocking the phosphorylation and nuclear translocation of IRF3. In conclusion, our findings reveal that MRV outer capsid protein µ1 is a key factor in antagonizing RLRs signaling cascades and provide new strategies for effective prevention and treatment of MRV infection.


Asunto(s)
Proteínas de la Cápside , Proteína 58 DEAD Box , Factor 3 Regulador del Interferón , Helicasa Inducida por Interferón IFIH1 , Orthoreovirus de los Mamíferos , Receptores Inmunológicos , Transducción de Señal , Animales , Humanos , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Proteína 58 DEAD Box/metabolismo , Células HEK293 , Inmunidad Innata/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Interferón beta/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Orthoreovirus de los Mamíferos/inmunología , Orthoreovirus de los Mamíferos/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas , Infecciones por Reoviridae/inmunología , Transducción de Señal/inmunología , Proteínas Virales/metabolismo , Proteínas de la Cápside/metabolismo
13.
Virology ; 594: 110042, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38492519

RESUMEN

High variability and adaptability of RNA viruses allows them to spread between humans and animals, causing large-scale infectious diseases which seriously threat human and animal health and social development. At present, AIDS, viral hepatitis and other viral diseases with high incidence and low cure rate are still spreading around the world. The outbreaks of Ebola, Zika, dengue and in particular of the global pandemic of COVID-19 have presented serious challenges to the global public health system. The development of highly effective and broad-spectrum antiviral drugs is a substantial and urgent research subject to deal with the current RNA virus infection and the possible new viral infections in the future. In recent years, with the rapid development of modern disciplines such as artificial intelligence technology, bioinformatics, molecular biology, and structural biology, some new strategies and targets for antivirals development have emerged. Here we review the main strategies and new targets for developing small-molecule antiviral drugs against RNA viruses through the analysis of the new drug development progress against several highly pathogenic RNA viruses, to provide clues for development of future antivirals.


Asunto(s)
Virus ARN , Virosis , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Antivirales/química , Inteligencia Artificial , Virus ARN/genética , Virus Zika/genética , Infección por el Virus Zika/tratamiento farmacológico
14.
Viruses ; 16(2)2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38399950

RESUMEN

Histone H1.2 is a member of the linker histone family, which plays extensive and crucial roles not only in the regulation of chromatin dynamics, cell cycle, and cell apoptosis, but also in viral diseases and innate immunity response. Recently, it was discovered that H1.2 regulates interferon-ß and inhibits influenza virus replication, whereas its role in other viral infections is poorly reported. Here, we first found the up-regulation of H1.2 during Encephalomyocarditis virus (EMCV) infection, implying that H1.2 was involved in EMCV infection. Overexpression of H1.2 inhibited EMCV proliferation, whereas knockdown of H1.2 showed a significant promotion of virus infection in HEK293T cells. Moreover, we demonstrated that overexpression of H1.2 remarkably enhanced the production of EMCV-induced type I interferon, which may be the crucial factor for H1.2 proliferation-inhibitory effects. We further found that H1.2 up-regulated the expression of the proteins of the MDA5 signaling pathway and interacted with MDA5 and IRF3 in EMCV infection. Further, we demonstrated that H1.2 facilitated EMCV-induced phosphorylation and nuclear translocation of IRF3. Briefly, our research uncovers the mechanism of H1.2 negatively regulating EMCV replication and provides new insight into antiviral targets for EMCV.


Asunto(s)
Virus de la Encefalomiocarditis , Histonas , Humanos , Células HEK293 , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1/genética , Transducción de Señal , Replicación Viral
15.
Orthop Surg ; 16(1): 149-156, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38049379

RESUMEN

OBJECTIVE: Existing studies have conflicting results about the predictors of forgotten joints in patients with total knee arthroplasty (TKA), and the relationship between psychosocial factors and forgotten knees is unknown. The purpose of this study was to confirm predictors for the forgotten joint in TKA patients. METHODS: This was an observational, prospective longitudinal study. A total of 205 patients who underwent TKA and a 6-month follow-up were included between August 2020 and September 2021. Demographic characteristics, clinical characteristics, and psychosocial variables were collected before TKA surgery (T0). The forgotten joint score (FJS) was taken before TKA surgery (T0) and at 1 month (T1), 3 months (T3), and 6 months (T6) after TKA surgery. The psychosocial variables were also completed at T6. Bivariate and multivariable linear regressions (LR) were performed to screen the predictors associated with FJS (T6). RESULTS: Patients who underwent TKA in our study had a mean FJS of 20.3 ± 12.2 before surgery, 15.9 ± 10.3 at 1 month, 28.7 ± 12.6 at 3 months, and 40.3 ± 12.5 at 6 months. The predictors were sex, combined musculoskeletal disorders (MSD), operation time, FJS (T3), range of motion (ROM) (T6), pain score (T6), Groningen orthopaedic social support scale (GO-SSS) score (T6), and the generalized anxiety disorder scale (GAD) score (T6). The data satisfied the assumptions of multivariable linear regressions. The multiple R2 of LR was 0.71, and the adjusted R2 was 0.70. The F-statistic of the LR model was 59.5 (p < 0.000). CONCLUSION: Our study revealed the level of forgotten knee decreased slightly from preoperation to 1 month postoperatively and then increased from 1 month postoperatively to 6 months postoperatively in TKA patients. The main predictors associated with the FJS at 6 months after surgery were sex, combined MSD, operation time, FJS (T3), ROM (T6), pain score (T6), GO-SSS score (T6), and anxiety (T6).


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Osteoartritis de la Rodilla , Humanos , Artroplastia de Reemplazo de Rodilla/métodos , Modelos Lineales , Estudios Prospectivos , Estudios Longitudinales , Osteoartritis de la Rodilla/cirugía , Articulación de la Rodilla/cirugía , Dolor , Estudios Retrospectivos
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 596-601, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37248590

RESUMEN

Objective: To investigate the prevalence and common sites of severe foot pain among nurses, to define the risk factors of severe foot pain in nurses in tertiary hospital in China, and to construct a nomograph model for predicting individuals' risks for severe foot pain. Methods: Between August 2019 and December 2019, a stratified global sampling method was used to select 10691 nurses from 351 tertiary hospitals in China to investigate the incidence of severe foot pain among them. The variables that may affect the occurrence of severe foot pain were analyzed by single factor analysis to identify the influencing factors of severe foot pain in nurses. Furthermore, the independent risk factors of severe foot pain were analyzed by stepwise logistic regression analysis. The statistically significant factors identified in the multivariate regression analysis were incorporated into the nomograph prediction model. The predictive performance of the nomograph was measured by the consistency index (C-index) and calibrated with 1000 Bootstrap samples. Results: A total of 3419 nurses out of the 10691 had foot pain, resulting in an incidence of 31.98%. The incidence of severe pain (VAS score 7-10) was 2.27% (243 of 10691). The locations of severe pain were more commonly found in the soles and heels of both feet. Six factors, including age, education, the material of the work shoes, comfortableness of the work shoes, number of complications, and foot injure history, were incorporated in the nomograph predicting model. The C-index value was 0.706 and the standard curve fitted well with the calibrated prediction curve. Conclusion: The risk prediction model constructed in this study showed sound performance in predicting the risk of severe foot pain in nurses, and all the indicators involved are simple and the relevant data are easily obtained. The model can provide reference for preventing severe foot pain in nurses.


Asunto(s)
Enfermeras y Enfermeros , Dolor , Humanos , Centros de Atención Terciaria , Dolor/epidemiología , China/epidemiología
17.
Virology ; 584: 1-8, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37167793

RESUMEN

Encephalomycarditis virus (EMCV) is an essential pathogen with a broad host range and causes enormous economic losses to the pig industry worldwide. Here, we constructed and assembled the EMCV virus-like particles (VLPs) in vitro and verified high efficiency of virus protection. Results showed that the proteins auto-assembled into VLPs successfully in vitro. The animal experiments revealed that high-titer antibody production is triggered by VLPs. Meanwhile, the mice challenged with EMCV were obviously protected. The protection rate of group VLPs with the adjuvant was 75%, while that of the VLPs group was 62.5% compared to the control. These findings indicate that recombinant EMCV VLPs have a remarkable anti-EMCV effect and could be a new vaccine candidate for the control of EMCV infection.


Asunto(s)
Anticuerpos Antivirales , Vacunas de Partículas Similares a Virus , Animales , Ratones , Porcinos , Adyuvantes Inmunológicos , Formación de Anticuerpos , Vacunas de Partículas Similares a Virus/genética
18.
Viruses ; 15(4)2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37112847

RESUMEN

Interferon (IFN) helps cells fight viral infections by further inducing the expression of many downstream IFN-stimulated genes (ISGs). Human interferon-inducible transmembrane proteins (IFITM) are one of these ISGs. The antiviral function of human IFITM1, IFITM2, and IFITM3 are well known. In this study, we report that IFITM can significantly inhibit EMCV infectivity in HEK293 cells. Overexpression of IFITM proteins could promote IFN-ß production. Meanwhile, IFITMs facilitated type I IFN signaling pathway adaptor MDA5 expression. We detected the binding of IFITM2 to MDA5 in a co-immunoprecipitation assay. It was also found that the ability of IFITM2 to activate IFN-ß was significantly inhibited after interfering with MDA5 expression, suggesting that MDA5 may play an important role in the activation of the IFN-ß signaling pathway by IFITM2. Moreover, the N-terminal domain plays an active role in the antiviral activity and the activation of IFN-ß by IFITM2. These findings suggest that IFITM2 plays a vital role in antiviral signaling transduction. In addition, a positive feed-forward loop between IFITM2 and type I IFN establishes a key role for IFITM2 in enforcing innate immune responses.


Asunto(s)
Interferón Tipo I , Proteínas de Unión al ARN , Humanos , Células HEK293 , Proteínas de Unión al ARN/metabolismo , Interferón Tipo I/metabolismo , Antivirales/farmacología , Transducción de Señal , Proteínas de la Membrana/metabolismo
19.
Small ; 19(22): e2207461, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36861365

RESUMEN

The local coordination environment of catalytical moieties directly determines the performance of electrochemical energy storage and conversion devices, such as Li-O2 batteries (LOBs) cathode. However, understanding how the coordinative structure affects the performance, especially for non-metal system, is still insufficient. Herein, a strategy that introduces S-anion to tailor the electronic structure of nitrogen-carbon catalyst (SNC) is proposed to improve the LOBs performance. This study unveils that the introduced S-anion effectively manipulates the p-band center of pyridinic-N moiety, substantially reducing the battery overpotential by accelerating the generation and decomposition of intermediate products Li1-3 O4 . The lower adsorption energy of discharging product Li2 O2 on NS pair accounts for the long-term cyclic stability by exposing the high active area under operation condition. This work demonstrates an encouraging strategy to enhance LOBs performance by modulating the p-band center on non-metal active sites.

20.
J Colloid Interface Sci ; 629(Pt B): 263-269, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36155921

RESUMEN

Two-dimensional (2D) material Ti3C2 MXenes have recently been used in electrode composites for lithium-ion batteries (LIBs) for their excellent electrical conductivity and accordion-like nanosheet morphology. However, Ti3C2 has low specific capacity and fast degradation rate upon cycling after inevitably coupling with surface species during synthesis. In this work, Ti3C2 is used as Ti-source for Li4Ti5O12 (LTO) and C-source for carbon quantum dots (CQDs) in a one-step hydrothermal process. The resultant LTO product (M-LTO) inherits the nanosheet morphology of Ti3C2 with uniformly anchored CQDs. The highly electronic conductive CQDs optimize the transmission path of ions which reduces the diffusion barrier of ions, and they further increase the density of states of the material which effectively improving the conductivity of M-LTO. Remarkable electrochemical performances including high initial specific capacity, long lifetime and excellent low temperature capacity are demonstrated for this type of electrode in LIBs, sodium ion batteries (SIBs) and lithium-magnesium ion hybrid batteries (LMIHBs). This paper offers a new strategy to the rapidly expanding research on the application of transition metal MXenes in electrodes for metal-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA