Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Life Sci ; 341: 122504, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354973

RESUMEN

Cingulin and its paralog paracingulin are vital components of the apical junctional complex in vertebrate epithelial and endothelial cells. They are both found in tight junctions (TJ), and paracingulin is also detectable in adherens junctions (AJ) as TJ cytoplasmic plaque proteins. Cingulin and paracingulin interact with other proteins to perform functions. They interact with cytoskeletal proteins, modulate the activity of small GTPases, such as RhoA and Rac1, and regulate gene expression. In addition, cingulin and paracingulin regulate barrier function and many pathological processes, including inflammation and tumorigenesis. In this review, we summarize the discovery and structure, expression and subcellular distribution, and molecular interactions of cingulin family proteins and discuss their role in development, physiology, and pathological processes.


Asunto(s)
Células Endoteliales , Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Células Endoteliales/metabolismo , Relevancia Clínica , Proteínas del Citoesqueleto/genética , Uniones Estrechas/metabolismo , Células Epiteliales/metabolismo
2.
IUBMB Life ; 76(3): 140-160, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37728571

RESUMEN

The molecular mechanisms of glioblastoma (GBM) are unclear, and the prognosis is poor. Spinster homolog 2 (SPNS2) is reportedly involved in pathological processes such as immune response, vascular development, and cancer. However, the biological function and molecular role of SPNS2 in GBM are unclear. SPNS2 is aberrantly low expressed in glioma. Survival curves, risk scores, prognostic nomograms, and univariate and multifactorial Cox regression analyses showed that SPNS2 is an independent prognostic indicator significantly associated with glioma progression and prognosis. Cell function assays and in vivo xenograft transplantation were performed that downregulation of SPNS2 promoted GBM cell growth, migration, invasion, epithelial-mesenchymal transition (EMT), anti-apoptosis, drug resistance, and stemness, while overexpression of SPNS2 had the opposite effect. Meanwhile, the functional enrichment and signaling pathways of SPNS2 in the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and RNA sequencing were analyzed by Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene set enrichment analysis (GSEA). The above results were related to the inhibition of the PTEN/PI3K/AKT pathway by SPNS2. In addition, we predicted that SPNS2 is closely associated with immune infiltration in the tumor microenvironment by four immune algorithms, ESTIMATE, TIMER, CIBERSORT, and QUANTISEQ. In particular, SPNS2 was negatively correlated with the infiltration of most immune cells, immunomodulators, and chemokines. Finally, single-cell sequencing analysis also revealed that SPNS2 was remarkably correlated with macrophages, and downregulation of SPNS2 promotes the expression of M2-like macrophages. This study provides new evidence that SPNS2 inhibits malignant progression, stemness, and immune infiltration of GBM cells through PTEN/PI3K/AKT pathway. SPNS2 may become a new diagnostic indicator and potential immunotherapeutic target for glioma.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Microambiente Tumoral/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
3.
Eur J Pharmacol ; 964: 176304, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38142851

RESUMEN

Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.


Asunto(s)
Neoplasias , Receptores Activados del Proliferador del Peroxisoma , Humanos , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Transducción de Señal , Desarrollo de Medicamentos , Microambiente Tumoral
4.
Clin Cancer Res ; 29(24): 5183-5195, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37819952

RESUMEN

PURPOSE: Stromal fibrosis limits nutritional supply and disarrays metabolism in pancreatic cancer (PDA, pancreatic ductal adenocarcinoma). Understanding of the molecular basis underlying metabolic cues would improve PDA management. The current study determined the interaction between glucose-regulated proteins 78 (GRP78) and hypoxia-inducible factor 1α (HIF-1α) and its mechanistic roles underlying PDA response to oxygen and glucose restrains. EXPERIMENTAL DESIGN: Gene expression and its association with clinicopathologic characteristics of patients with PDA and mouse models were analyzed using IHC. Protein expression and their regulation were measured by Western blot and immunoprecipitation analyses. Protein interactions were determined using gain- and loss-of-function assays and molecular methods, including chromatin immunoprecipitation, co-immunoprecipitation, and dual luciferase reporter. RESULTS: There was concomitant overexpression of both GRP78 and HIF-1α in human and mouse PDA tissues and cells. Glucose deprivation increased the expression of GRP78 and HIF-1α, particularly colocalization in nucleus. Induction of HIF-1α expression by glucose deprivation in PDA cells depended on the expression of and its own interaction with GRP78. Mechanistically, increased expression of both HIF-1α and LDHA under glucose deprivation was caused by the direct binding of GRP78 and HIF-1α protein complexes to the promoters of HIF-1α and LDHA genes and transactivation of their transcriptional activity. CONCLUSIONS: Protein complex of GRP78 and HIF-1α directly binds to HIF-1α own promoter and LDHA promoter, enhances the transcription of both HIF-1α and LDHA, whereas glucose deprivation increases GRP78 expression and further enhances HIF-1α and LDHA transcription. Therefore, crosstalk and integration of hypoxia- and hypoglycemia-responsive signaling critically impact PDA metabolic reprogramming and therapeutic resistance.


Asunto(s)
Carcinoma Ductal Pancreático , Chaperón BiP del Retículo Endoplásmico , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Resistencia a Antineoplásicos/genética , Chaperón BiP del Retículo Endoplásmico/metabolismo , Glucosa , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Reprogramación Metabólica/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
5.
Int J Biol Sci ; 19(12): 3804-3815, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37564207

RESUMEN

Tight junction (TJ) is the barrier of epithelial and endothelial cells to maintain paracellular substrate transport and cell polarity. As one of the TJ cytoplasmic adaptor proteins adjacent to cell membrane, zonula occludens (ZO) proteins are responsible for connecting transmembrane TJ proteins and cytoplasmic cytoskeleton, providing a binding platform for transmembrane TJ proteins to maintain the barrier function. In addition to the basic structural function, ZO proteins play important roles in signal regulation such as cell proliferation and motility, the latter including cell migration, invasion and metastasis, to influence embryonic development, tissue homeostasis, damage repair, inflammation, tumorigenesis, and cancer progression. In this review, we will focus on the signal regulating function of ZO proteins in inflammation and tumorigenesis, and discuss the limitations of previous research and future challenges in ZO protein research.

6.
Cell Death Dis ; 14(8): 528, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591827

RESUMEN

Tumor is a representative of cell immortalization, while senescence irreversibly arrests cell proliferation. Although tumorigenesis and senescence seem contrary to each other, they have similar mechanisms in many aspects. Pancreatic ductal adenocarcinoma (PDA) is highly lethal disease, which occurs and progresses through a multi-step process. Senescence is prevalent in pancreatic premalignancy, as manifested by decreased cell proliferation and increased clearance of pre-malignant cells by immune system. However, the senescent microenvironment cooperates with multiple factors and significantly contributes to tumorigenesis. Evidently, PDA progression requires to evade the effects of cellular senescence. This review will focus on dual roles that senescence plays in PDA development and progression, the signaling effectors that critically regulate senescence in PDA, the identification and reactivation of molecular targets that control senescence program for the treatment of PDA.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Páncreas , Neoplasias Pancreáticas/genética , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral , Neoplasias Pancreáticas
7.
J Immunother Cancer ; 11(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37597850

RESUMEN

BACKGROUND: Immunotherapy, including adoptive cell therapy (ACT) and immune checkpoint inhibitors (ICIs), has a limited effect in most patients with colorectal cancer (CRC), and the efficacy is further limited in patients with liver metastasis. Lack of antitumor lymphocyte infiltration could be a major cause, and there remains an urgent need for more potent and safer therapies for CRC. METHODS: In this study, the antitumoral synergism of low molecular weight heparin (LMWH) combined with immunotherapy in the microsatellite stable (MSS) highly aggressive murine model of CRC was fully evaluated. RESULTS: Dual LMWH and ACT objectively mediated the stagnation of tumor growth and inhibition of liver metastasis, neither LMWH nor ACT alone had any antitumoral activity on them. The combination of LMWH and ACT obviously increased the infiltration of intratumor CD8+ T cells, as revealed by multiplex immunohistochemistry, purified CD8+ T-cell transfer assay, and IVIM in vivo imaging. Mechanistically, evaluation of changes in the tumor microenvironment revealed that LMWH improved tumor vascular normalization and facilitated the trafficking of activated CD8+ T cells into tumors. Similarly, LMWH combined with anti-programmed cell death protein 1 (PD-1) therapy provided superior antitumor activity as compared with the single PD-1 blockade in murine CT26 tumor models. CONCLUSIONS: LMWH could enhance ACT and ICIs-based immunotherapy by increasing lymphocyte infiltration into tumors, especially cytotoxic CD8+ T cells. These results indicate that combining LMWH with an immunotherapy strategy presents a promising and safe approach for CRC treatment, especially in MSS tumors.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Animales , Ratones , Heparina de Bajo-Peso-Molecular/farmacología , Heparina de Bajo-Peso-Molecular/uso terapéutico , Linfocitos T CD8-positivos , Inmunoterapia , Neoplasias Colorrectales/tratamiento farmacológico , Microambiente Tumoral
8.
Cytokine Growth Factor Rev ; 71-72: 40-53, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37291030

RESUMEN

Pancreatic fibrosis is caused by excessive deposition of extracellular matrixes of collagen and fibronectin in the pancreatic tissue as a result of repeated injury often seen in patients with chronic pancreatic diseases. The most common causative conditions include inborn errors of metabolism, chemical toxicity and autoimmune disorders. Its pathophysiology is highly complex, including acinar cell injury, acinar stress response, duct dysfunction, pancreatic stellate cell activation, and persistent inflammatory response. However, the specific mechanism remains to be fully clarified. Although the current therapeutic strategies targeting pancreatic stellate cells show good efficacy in cell culture and animal models, they are not satisfactory in the clinic. Without effective intervention, pancreatic fibrosis can promote the transformation from pancreatitis to pancreatic cancer, one of the most lethal malignancies. In the normal pancreas, the acinar component accounts for 82% of the exocrine tissue. Abnormal acinar cells may activate pancreatic stellate cells directly as cellular source of fibrosis or indirectly via releasing various substances and initiate pancreatic fibrosis. A comprehensive understanding of the role of acinar cells in pancreatic fibrosis is critical for designing effective intervention strategies. In this review, we focus on the role of and mechanisms underlying pancreatic acinar injury in pancreatic fibrosis and their potential clinical significance.


Asunto(s)
Enfermedades Pancreáticas , Pancreatitis , Animales , Humanos , Células Acinares/metabolismo , Células Acinares/patología , Páncreas/metabolismo , Páncreas/patología , Enfermedades Pancreáticas/metabolismo , Enfermedades Pancreáticas/patología , Enfermedad Crónica , Fibrosis
9.
Cell Death Discov ; 9(1): 118, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031197

RESUMEN

Krüppel-like transcriptional factor is important in maintaining cellular functions. Deletion of Krüppel-like transcriptional factor usually causes abnormal embryonic development and even embryonic death. KLF4 is a prominent member of this family, and embryonic deletion of KLF4 leads to alterations in skin permeability and postnatal death. In addition to its important role in embryo development, it also plays a critical role in inflammation and malignancy. It has been investigated that KLF4 has a regulatory role in a variety of cancers, including lung, breast, prostate, colorectal, pancreatic, hepatocellular, ovarian, esophageal, bladder and brain cancer. However, the role of KLF4 in tumorigenesis is complex, which may link to its unique structure with both transcriptional activation and transcriptional repression domains, and to the regulation of its upstream and downstream signaling molecules. In this review, we will summarize the structural and functional aspects of KLF4, with a focus on KLF4 as a clinical biomarker and therapeutic target in different types of tumors.

10.
Front Oncol ; 13: 1024151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874143

RESUMEN

Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.

11.
J Gastroenterol Hepatol ; 38(7): 1170-1180, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36941105

RESUMEN

BACKGROUND AND AIM: Gastric cancer (GC) is a common malignant neoplasm in the gastrointestinal tract, accounting for high mortality globally. Treacle ribosome biogenesis factor 1 (TCOF1) is a nucleolar protein, which has been reported to be implicated in the pathogenesis of Treacher Collins syndrome and the development of several types of human cancer. However, the role of TCOF1 in GC is not known. METHODS: Immunohistochemistry was carried out to determine TCOF1 expression in GC tissues. Immunofluorescence, co-IP, and DNA fiber assays were conducted to investigate the function of TCOF1 in GC-derived BGC-823 and SGC-7901 cell lines. RESULTS: TCOF1 expression was aberrantly increased in GC tissues compared with adjacent normal tissues. In addition, we found that TCOF1 left the nucleolus and localized to R-loops (DNA/RNA hybrids) during S phase in GC cells. Furthermore, TCOF1 interacted with DDX5 and suppressed R-loop levels. Knockdown of TCOF1 led to increased nucleoplasmic R-loops specifically during S phase, which restrained DNA replication and cell proliferation. Overexpression of R-loop eraser RNaseH1 rescued the DNA synthesis defects and decreased DNA damage caused by TCOF1 depletion. CONCLUSION: These findings demonstrate a novel role of TCOF1 in maintaining GC cell proliferation by alleviating R-loop associated DNA replication stress.


Asunto(s)
Estructuras R-Loop , Neoplasias Gástricas , Humanos , Fosfoproteínas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/genética , Replicación del ADN , Proliferación Celular/genética , Ribosomas/metabolismo
12.
Clin Cancer Res ; 29(13): 2525-2539, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36729148

RESUMEN

PURPOSE: Pancreatic ductal adenocarcinoma (PDA) resists immunotherapy of adoptive cell transfer (ACT) and immune checkpoint inhibitors. Understanding the mechanisms underlying this resistance will improve PDA immunotherapy. This study investigated therapeutic effects and underlying mechanisms of anticoagulants on immunotherapy in PDA. EXPERIMENTAL DESIGN: The antitumor activity of immunotherapy was evaluated in mouse models of desert, excluded, and inflamed tumors. The underlying mechanisms were investigated by analyzing immune cell infiltration by immunofluorescence imaging and tumor microcirculation by interstitial fluid pressure and coagulation status measurement. RESULTS: Combined use of heparin and ACT inhibited tumor growth and metastasis, whereas neither heparin nor ACT had any therapeutic effect. The combination of heparin and ACT significantly increased the intratumor infiltration of CD8+ T cells and M1 macrophages and reduced the infiltration of immunosuppressive M2 macrophages and FOXP3+/CD4+ regulatory T cells (Treg). Assessments of tumor microenvironment revealed that heparin promoted tumor vascular regression and normalized the remaining blood vessels, facilitating the extravasation and perivascular accumulation of activated CD8+ T cells in tumors. Mechanistically, tumor microvessel hemodynamic properties were significantly improved by heparin, which is consistent with its inhibitory effects on tumor angiogenesis. Similarly, the combination of heparin and anti-PD1 also produced a pronounced antitumor activity, whereas neither heparin nor anti-PD1 treatment had appreciable antitumor activity. CONCLUSIONS: Combined treatment of heparin and ACT or anti-PD1 produced synergistic antitumor effects, which were at least in part through tumor vascular normalization, hence increased antitumor T-cell responses due to reduced Treg infiltration and increased M1 macrophage polarization. This synergistic combination therapy warrants clinical evaluation. See related commentary by Korc, p. 2348.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Heparina/farmacología , Anticoagulantes/farmacología , Microcirculación/efectos de los fármacos , Neoplasias Pancreáticas/patología , Inmunoterapia , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral/inmunología , Neoplasias Pancreáticas
13.
J Clin Med ; 12(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36675366

RESUMEN

Background: The impact of hepatitis E virus (HEV) infection on cancer development has been poorly investigated. This study aimed to explore the relationship between HEV seroprevalence and cancer risks and to identify high cancer risk subgroups in HEV-exposed populations. Methods: HEV seroprevalence status was determined in cancer and non-cancer subjects. Logistic regression and sensitivity analyses were used to assess the relationship between HEV antibody seropositivity and cancer risk for 17 cancer types. Additionally, interaction analyses were applied to interpret the association of HEV seroprevalence and other cancer risk factors. Results: Of the enrolled 4948 cancer and 4948 non-cancer subjects, cancer subjects had a higher anti-HEV seropositivity than non-cancer subjects (46.36% vs. 32.50%, p < 0.01). However, this divergency varied in degrees across different cancer types. Additionally, HEV seroprevalence was associated with cancer risk in young males (OR: 1.64, 95% CI: 1.19−2.27, p < 0.01). Remarkably, a significant association between HEV seroprevalence and cancer risk was observed only in gastric cancer patients (OR: 1.82, 95% CI: 1.07−3.09, p = 0.03). Conclusions: HEV seroprevalence was associated with cancer risk selectively in gastric cancer patients and young males, suggesting that cancer screening, particularly gastric cancer, should be regularly performed in young males with a history of HEV exposure.

14.
FASEB J ; 36(10): e22538, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36065631

RESUMEN

Antipsychotic agents are clinically utilized to treat schizophrenia and other mental disorders. These drugs induce neurological and metabolic side effects, but their influence on blood vessels remains largely unknown. Here, we show that haloperidol, one of the most frequently prescribed antipsychotic agents, induces vascular defects in bone marrow. Acute haloperidol treatment results in vascular dilation that is specific to hematopoietic organs. This vessel dilation is associated with disruption of hematopoiesis and hematopoietic stem/progenitor cells (HSPCs), both of which are reversible after haloperidol withdrawal. Mechanistically, haloperidol treatment blocked the secretion of vascular endothelial growth factor A (VEGF-A) from HSPCs. Genetic blockade of VEGF-A secretion from hematopoietic cells or inhibition of VEGFR2 in endothelial cells result in similar vessel dilation in bone marrow during regeneration after irradiation and transplantation. Conversely, VEGF-A gain of function rescues the bone marrow vascular defects induced by haloperidol treatment and irradiation. Our work reveals an unknown effect of antipsychotic agents on the vasculature and hematopoiesis with potential implications for drug application in clinic.


Asunto(s)
Antipsicóticos , Factor A de Crecimiento Endotelial Vascular , Antipsicóticos/farmacología , Células de la Médula Ósea/metabolismo , Células Endoteliales/metabolismo , Haloperidol/metabolismo , Haloperidol/farmacología , Hematopoyesis/fisiología , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Int J Biol Sci ; 18(10): 4245-4259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844783

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a high incidence of metastasis and dismal prognosis. As a member of Gas-Gap gene, RASAL2 is involved in the hydrolysis of RAS-GTP to RAS-GDP and abnormal expression in human cancers. Here we firstly described the function of RASAL2 on PDAC to enrich the knowledge of RAS family.We interestingly observed that RASAL2 expression was upregulated in PDAC at both mRNA and protein levels, and high expression of RASAL2 predicted a poor prognosis in PDAC patients. Additionally, RASAL2 promoted malignant behaviors of PDAC in vitro and in vivo. To determine the mechanistic roles of RASAL2 signaling and its potential as a therapeutic target in PDAC, we clarified that RASAL2 could accumulate the TIAM1 expression in different level through inhibiting YAP1 phosphorylation, increased TIAM1 mRNA expression and suppressed ubiquitination of TIAM1 protein. In conclusion, RASAL2 enhances YAP1/TIAM1 signaling and promotes PDAC development and progression.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas Activadoras de GTPasa , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pancreáticas/metabolismo , Fenotipo , ARN Mensajero , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/genética , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo , Proteínas Señalizadoras YAP , Neoplasias Pancreáticas
16.
Cell Oncol (Dordr) ; 45(2): 201-225, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35290607

RESUMEN

Pancreatic ductal metaplasia (PDM) is the transformation of potentially various types of cells in the pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental stimuli and genetic insults. The development of PDM to atypical hyperplasia or dysplasia is an important risk factor for pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDA). Recent studies using genetically engineered mouse models, cell lineage tracing, single-cell sequencing and others have unraveled novel cellular and molecular insights in PDM formation and evolution. Those novel findings help better understand the cellular origins and functional significance of PDM and its regulation at cellular and molecular levels. Given that PDM represents the earliest pathological changes in PDA initiation and development, translational studies are beginning to define PDM-associated cell and molecular biomarkers that can be used to screen and detect early PDA and to enable its effective intervention, thereby truly and significantly reducing the dreadful mortality rate of PDA. This review will describe recent advances in the understanding of PDM biology with a focus on its underlying cellular and molecular mechanisms, and in biomarker discovery with clinical implications for the management of pancreatic regeneration and tumorigenesis.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Biomarcadores , Carcinoma Ductal Pancreático/genética , Humanos , Metaplasia/patología , Ratones , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
17.
Biochim Biophys Acta Rev Cancer ; 1877(2): 188698, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35176433

RESUMEN

Pancreatic ductal metaplasia (PDM) is the transformation of potentially many type of cells in pancreas into ductal or ductal-like cells, which eventually replace the existing differentiated somatic cell type(s). PDM is usually triggered by and manifests its ability to adapt to environmental and cellular stimuli and stresses. Acinar to ductal metaplasia (ADM) is the predominant form of ductal metaplasia in pancreas. The cellular heterogeneity of PDM informs the differences in cellular origin, triggering events, functional subpopulations and evolution pathways of PDM. Currently it remains uncertain what are the exact cellular origins and functional significance of PDM, and how this process is regulated at cellular and molecular levels. The development of PDM to atypical hyperplasia is an important risk factor for pancreatic precursors, including intraepithelial neoplasia (PanIN), and pancreatic ductal adenocarcinoma (PDAC). Otherwise, the cellular plasticity in PDM contribute to the regeneration of both exocrine and endocrine components of pancreas. This Review will systematically describe current knowledge on the understanding of PDM biology with an emphasis on its underlying mechanisms and implications in pancreatic regeneration, inflammation and tumorigenesis.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Células Acinares/metabolismo , Células Acinares/patología , Carcinoma Ductal Pancreático/patología , Humanos , Metaplasia/metabolismo , Metaplasia/patología , Páncreas/patología , Neoplasias Pancreáticas/patología
18.
J Pathol ; 257(2): 125-139, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35170758

RESUMEN

Pancreatic ductal metaplasia (PDM) is the stepwise replacement of differentiated somatic cells with ductal or ductal-like cells in the pancreas. PDM is usually triggered by cellular and environmental insults. PDM development may involve all cell lineages of the pancreas, and acinar cells with the highest plasticity are the major source of PDM. Pancreatic progenitor cells are also involved as cells of origin or transitional intermediates. PDM is heterogeneous at the histological, cellular, and molecular levels and only certain subsets of PDM develop further into pancreatic intraepithelial neoplasia (PanIN) and then pancreatic ductal adenocarcinoma (PDAC). The formation and evolution of PDM is regulated at the cellular and molecular levels through a complex network of signaling pathways. The key molecular mechanisms that drive PDM formation and its progression into PanIN/PDAC remain unclear, but represent key targets for reversing or inhibiting PDM. Alternatively, PDM could be a source of pancreas regeneration, including both exocrine and endocrine components. Cellular aging and apoptosis are obstacles to PDM-to-PanIN progression or pancreas regeneration. Functional identification of the cellular and molecular events driving senescence and apoptosis in PDM and its progression would help not only to restrict the development of PDM into PanIN/PDAC, but may also facilitate pancreatic regeneration. This review systematically assesses recent advances in the understanding of PDM physiology and pathology, with a focus on its implications for enhancing regeneration and prevention of cancer. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Mama , Carcinoma in Situ , Carcinoma Ductal de Mama , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Femenino , Humanos , Metaplasia , Páncreas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
19.
Cell Death Dis ; 12(6): 574, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083520

RESUMEN

Sphingosine phosphate lyase 1 (SGPL1) is a highly conserved enzyme that irreversibly degrades sphingosine-1-phosphate (S1P). Sgpl1-knockout mice fail to develop germ cells, resulting in infertility. However, the molecular mechanism remains unclear. The results of the present study showed that SGPL1 was expressed mainly in granulosa cells, Leydig cells, spermatocytes, and round spermatids. Sgpl1 deletion led to S1P accumulation in the gonads. In the ovary, S1P decreased natriuretic peptide receptor 2 (NPR2) activity in granulosa cells and inhibited early follicle growth. In the testis, S1P increased the levels of cyclin-dependent kinase inhibitor 1A (p21) and apoptosis in Leydig cells, thus resulting in spermatogenesis arrest. These results indicate that Sgpl1 deletion increases intracellular S1P levels, resulting in the arrest of female and male germ cell development via different signaling pathways.


Asunto(s)
Aldehído-Liasas/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Células Germinativas/crecimiento & desarrollo , Proproteína Convertasas/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Diferenciación Celular/fisiología , Femenino , Células Germinativas/metabolismo , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR
20.
Mol Cancer ; 20(1): 34, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593396

RESUMEN

Early detection and diagnosis are the key to successful clinical management of pancreatic cancer and improve the patient outcome. However, due to the absence of early symptoms and the aggressiveness of pancreatic cancer, its 5-year survival rate remains below 5 %. Compared to tissue samples, liquid biopsies are of particular interest in clinical settings with respect to minimal invasiveness, repeated sampling, complete representation of the entire or multi-site tumor bulks. The potential of liquid biopsies in pancreatic cancer has been demonstrated by many studies which prove that liquid biopsies are able to detect early emergency of pancreatic cancer cells, residual disease, and recurrence. More interestingly, they show potential to delineate the heterogeneity, spatial and temporal, of pancreatic cancer. However, the performance of liquid biopsies for the diagnosis varies largely across different studies depending of the technique employed and also the type and stage of the tumor. One approach to improve the detect performance of liquid biopsies is to intensively inspect circulome and to define integrated biomarkers which simultaneously profile circulating tumor cells and DNA, extracellular vesicles, and circulating DNA, or cell free DNA and proteins. Moreover, the diagnostic validity and accuracy of liquid biopsies still need to be comprehensively demonstrated and validated.


Asunto(s)
Biomarcadores de Tumor/sangre , Biología Computacional/métodos , Neoplasias Pancreáticas/diagnóstico , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Detección Precoz del Cáncer , Humanos , Biopsia Líquida , Células Neoplásicas Circulantes/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Medicina de Precisión , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...