Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36013821

RESUMEN

Secondary aluminum dross (SAD) is a hazardous solid waste discharged from aluminum electrolysis and processing and the secondary aluminum industries, which causes severe environmental pollution and public health disasters. The stable presence of the α-Al2O3 and MgAl2O4 phases in SAD makes it difficult for it to be efficiently utilized. A combined dry pressing and alkaline roasting process was proposed for extracting the valuable Al element from SAD. Two alkaline additives (NaOH and Na2CO3) were selected as a sodium source for extracting the aluminum source from SAD in order to perform the thermodynamic analysis and roasting experiments. The phase transition behavior and the leaching performance tests were conducted using X-ray diffraction, scanning electron microscopy, X-ray fluorescence, leaching kinetics and thermal analysis. The recovery of Al and Na reached the values of 90.79% and 92.03%, respectively, under the optimal conditions (roasting temperature of 1150 °C, Na2CO3/Al2O3 molar ratio of 1.3, roasting time of 1 h, leaching temperature of 90 °C, L/S ratio of 10 mL·g-1 and leaching time of 30 min). Meanwhile, the removal efficiency of N and Cl reached 98.93% and 97.14%, respectively. The leaching kinetics indicated that the dissolution of NaAlO2 clinkers was a first-order reaction and controlled by layer diffusion process. The green detoxification and effective extraction of the Al element from SAD were simultaneously achieved without any pretreatments.

2.
Ecotoxicol Environ Saf ; 189: 110015, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31830602

RESUMEN

This paper adopts a novel data-processing method of ECSA® based on TG/DSC-MS system to basically study the characteristics of release and conversion of fluorides and cyanides during heat treatment of the spent cathode carbon block (SCCB). All the experiments were conducted at 10 K⋅min-1 heating rate and under Ar or Ar-O2 atmospheres. The results indicate that the release of fluorides was just a steady but slow phase transition process under both Ar and Ar-O2 atmospheres, which can be comparatively accelerated when the carbon material was burnt. The cyanides were effectively decomposed at high temperature and at Ar-O2 atmosphere, with around three quarters of the cyanides being converted to the N2 and nearly a quarter being to the NO. Finally, analysis on the flue gas composition indicates that it had a more complicated composition of CO2, N2, NO, NO2, HCN under Ar-O2 atmosphere but only had a composition of CO2 and NO under Ar atmosphere.


Asunto(s)
Contaminantes Atmosféricos/química , Carbono/química , Cianuros/química , Electrodos , Fluoruros/química , Contaminantes Atmosféricos/análisis , Aluminio , Argón/química , Atmósfera/química , Cianuros/análisis , Fluoruros/análisis , Calor , Metalurgia , Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...