Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 11(36): 16928-16934, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31490526

RESUMEN

Perovskite oxides with luminescent ions hold great promise in optoelectronic devices because of their outstanding thermal stabilities and electro-optic performance. As one typical perovskite upconversion (UC) host material, lead-free potassium sodium niobate ((K, Na)NbO3/(KxNa1-x)NbO3 or KNN) has attracted much attention in recent years. In the present work, a novel routine was developed to tune the upconversion photoluminescence (UC PL) performance by controlling the oxygen vacancy concentration in the KNN matrix, based on the 0.1% Er3+-doped KNN (Er-KNN) single crystals grown for the first time. UC PL properties, conductivity and defect chemistry of the single crystals were systematically investigated. The UC PL intensity of the as-grown Er-KNN material could be enhanced by 20 times after oxygen atmosphere annealing at 800 °C and fully quenched after vacuum annealing. What's more, by annealing under an oxygen atmosphere and vacuum, the conductivity of the Er-KNN sample was successfully tuned for more than 8 orders of magnitude. The super-wide range tunability of UC PL performance and conductivity could be explained by oxygen vacancies which gave rise to Nb5+-Nb4+ valence alternation. Because of the modulated photoluminescence properties and conductivity, our grown Er-KNN single crystals have great potential for use in multifunctional devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...