Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(6): 3289-3293, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36745399

RESUMEN

Pentagonal cyclization at the bay positions of armchair-edged graphenic cores can build molecular bowls without the destruction of hexagonal lattices. However, this synthesis remains challenging due to unfavorable strain and the multiple reactions required. Here, we show that a new type of graphenic molecular bowl with a depth of 1.7 Å and a diameter of 1.2 nm is constructed by sextuple Se annulation at the bay positions of armchair-edged hexa-peri-hexabenzocoronene. This graphenic bowl is functionalized with phenylseleno groups that stack into a discrete bilayer dimer in solution. Such a dimer exhibits high stability and survives in the gas phase after laser ablation. Strikingly, the asymmetric one-dimensional supramolecular columns of graphenic bowl with coherent stacking configuration are observed in the solid state, which results in a strong second harmonic generation with prominent polarization dependence. Our findings present a concise synthesis of a giant molecular bowl with a graphenic core and demonstrate the unique supramolecular assembly of extended graphenic bowls.

2.
Sci Adv ; 8(44): eadd8873, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36322657

RESUMEN

The rational design of non-Pt oxygen reduction reaction (ORR) catalysts and catalyst layers in fuel cells is largely impeded by insufficient knowledge of triple-phase boundaries (TPBs) in the micropore and mesopore ranges. Here, we developed a size-sensitive molecular probe method to resolve the TPB of Fe/N/C catalyst layers in these size ranges. More than 70% of the ORR activity was found to be contributed by the 0.8- to 2.0-nanometer micropores of Fe/N/C catalysts, even at a low micropore area fraction of 29%. Acid-alkaline interactions at the catalyst-polyelectrolyte interface deactivate the active sites in mesopores and macropores, resulting in inactive TPBs, leaving micropores without the interaction as the active TPBs. The concept of active and inactive TPBs provides a previously unidentified design principle for non-Pt catalyst and catalyst layers in fuel cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...