Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 19(45): e2302795, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37415517

RESUMEN

Pyridinic nitrogen has been recognized as the primary active site in nitrogen-doped carbon electrocatalysts for the oxygen reduction reaction (ORR), which is a critical process in many renewable energy devices. However, the preparation of nitrogen-doped carbon catalysts comprised of exclusively pyridinic nitrogen remains challenging, as well as understanding the precise ORR mechanisms on the catalyst. Herein, a novel process is developed using pyridyne reactive intermediates to functionalize carbon nanotubes (CNTs) exclusively with pyridine rings for ORR electrocatalysis. The relationship between the structure and ORR performance of the prepared materials is studied in combination with density functional theory calculations to probe the ORR mechanism on the catalyst. Pyridinic nitrogen can contribute to a more efficient 4-electron reaction pathway, while high level of pyridyne functionalization result in negative structural effects, such as poor electrical conductivity, reduced surface area, and small pore diameters, that suppressed the ORR performance. This study provides insights into pyridine-doped CNTs-functionalized for the first time via pyridyne intermediates-as applied in the ORR and is expected to serve as valuable inspiration in designing high-performance electrocatalysts for energy applications.

2.
Nat Commun ; 13(1): 6382, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289229

RESUMEN

Constructing stable electrodes which function over long timescales at large current density is essential for the industrial realization and implementation of water electrolysis. However, rapid gas bubble detachment at large current density usually results in peeling-off of electrocatalysts and performance degradation, especially for long term operations. Here we construct a mechanically-stable, all-metal, and highly active CuMo6S8/Cu electrode by in-situ reaction between MoS2 and Cu. The Chevrel phase electrode exhibits strong binding at the electrocatalyst-support interface with weak adhesion at electrocatalyst-bubble interface, in addition to fast hydrogen evolution and charge transfer kinetics. These features facilitate the achievement of large current density of 2500 mA cm-2 at a small overpotential of 334 mV which operate stably at 2500 mA cm-2 for over 100 h. In-situ total internal reflection imaging at micrometer level and mechanical tests disclose the relationships of two interfacial forces and performance of electrocatalysts. This dual interfacial engineering strategy can be extended to construct stable and high-performance electrodes for other gas-involving reactions.

3.
J Chem Phys ; 157(7): 074704, 2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-35987593

RESUMEN

Developing efficient catalysts for electrochemical CO2 reduction reaction (ECO2RR) to hydrocarbons is becoming increasingly important but still challenging due to their high overpotential and poor selectivity. Here, the famous Heusler alloys are investigated as ECO2RR catalysts for the first time by means of density functional theory calculations. The linear scaling relationship between the adsorption energies of CHO (and COOH) and CO intermediates is broken and, thus, the overpotential can be tuned regularly by chemically permuting different 3d, 4d, or 5d transition metals (TMs) in Heusler alloy Cu2TMAl. Cu2ZnAl shows the best activity among all the 30 Heusler alloys considered in the present study, with 41% improvement in energy efficiency compared to pure Cu electrode. Cu2PdAl, Cu2AgAl, Cu2PtAl, and Cu2AuAl are also good candidates. The calculations on the competition between hydrogen evolution reaction and CO2RR indicate that Cu2ZnAl is also the one having the best selectivity toward hydrocarbons. This work identifies the possibility of applying the Heusler alloy as an efficient ECO2RR catalyst. Since thousands of Heusler alloys have been found in experiments, the present study also encourages the search for more promising candidates in this broad research area.

4.
Small ; 18(32): e2201051, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35841344

RESUMEN

2D material-based heterostructures are constructed by stacking or spicing individual 2D layers to create an interface between them, which have exotic properties. Here, a new strategy for the in situ growth of large numbers of 2D heterostructures on the centimeter-scale substrate is developed. In the method, large numbers of 2D MoS2 , MoO2 , or their heterostructures of MoO2 /MoS2 are controllably grown in the same setup by simply tuning the gap distance between metal precursor and growth substrate, which changes the concentration of metal precursors feed. A lateral force microscope is used first to identify the locations of each material in the heterostructures, which have MoO2 on the top of MoS2 . Noteworthy, the creation of a clean interface between atomic thin MoO2 (metallic) and MoS2 (semiconducting) results in a different electronic structure compared with pure MoO2 and MoS2 . Theoretical calculations show that the charge redistribution at such an interface results in an improved HER performance on the MoO2 /MoS2 heterostructures, showing an overpotential of 60 mV at 10 mA cm-2 and a Tafel slope of 47 mV dec-1 . This work reports a new strategy for the in situ growth of heterostructures on large-scale substrates and provides platforms to exploit their applications.

5.
Adv Mater ; 33(31): e2008373, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34174114

RESUMEN

Bismuth (Bi) is a topological crystalline insulator (TCI), which has gapless topological surface states (TSSs) protected by a specific crystalline symmetry that strongly depends on the facet. Bi is also a promising electrochemical CO2 reduction reaction (ECO2 RR) electrocatalyst for formate production. In this study, single-crystalline Bi rhombic dodecahedrons (RDs) exposed with (104) and (110) facets are developed. The Bi RDs demonstrate a very low overpotential and high selectivity for formate production (Faradic efficiency >92.2%) in a wide partial current density range from 9.8 to 290.1 mA cm-2 , leading to a remarkably high full-cell energy efficiency (69.5%) for ECO2 RR. The significantly reduced overpotential is caused by the enhanced *OCHO adsorption on the Bi RDs. The high selectivity of formate can be ascribed to the TSSs and the trivial surface states opening small gaps in the bulk gap on Bi RDs, which strengthens and stabilizes the preferentially adsorbed *OCHO and mitigates the competing adsorption of *H during ECO2 RR. This study describes a promising application of Bi RDs for high-rate formate production and high-efficiency energy storage of intermittent renewable electricity. Optimizing the geometry of TCIs is also proposed as an effective strategy to tune the TSSs of topological catalysts.

6.
Angew Chem Int Ed Engl ; 60(31): 17108-17114, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34033203

RESUMEN

The electrocatalytic conversion of CO2 into value-added chemicals is a promising approach to realize a carbon-energy balance. However, low current density still limits the application of the CO2 electroreduction reaction (CO2 RR). Metal-organic frameworks (MOFs) are one class of promising alternatives for the CO2 RR due to their periodically arranged isolated metal active sites. However, the poor conductivity of traditional MOFs usually results in a low current density in CO2 RR. We have prepared conductive two-dimensional (2D) phthalocyanine-based MOF (NiPc-NiO4 ) nanosheets linked by nickel-catecholate, which can be employed as highly efficient electrocatalysts for the CO2 RR to CO. The obtained NiPc-NiO4 has a good conductivity and exhibited a very high selectivity of 98.4 % toward CO production and a large CO partial current density of 34.5 mA cm-2 , outperforming the reported MOF catalysts. This work highlights the potential of conductive crystalline frameworks in electrocatalysis.

7.
Angew Chem Int Ed Engl ; 59(52): 23641-23648, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-32926542

RESUMEN

It is still a great challenge to achieve high selectivity of CH4 in CO2 electroreduction reactions (CO2 RR) because of the similar reduction potentials of possible products and the sluggish kinetics for CO2 activation. Stabilizing key reaction intermediates by single type of active sites supported on porous conductive material is crucial to achieve high selectivity for single product such as CH4 . Here, Cu2 O(111) quantum dots with an average size of 3.5 nm are in situ synthesized on a porous conductive copper-based metal-organic framework (CuHHTP), exhibiting high selectivity of 73 % towards CH4 with partial current density of 10.8 mA cm-2 at -1.4 V vs. RHE (reversible hydrogen electrode) in CO2 RR. Operando infrared spectroscopy and DFT calculations reveal that the key intermediates (such as *CH2 O and *OCH3 ) involved in the pathway of CH4 formation are stabilized by the single active Cu2 O(111) and hydrogen bonding, thus generating CH4 instead of CO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...