Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4967, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862582

RESUMEN

C - H bond activation is a ubiquitous reaction that remains a major challenge in chemistry. Although semiconductor-based photocatalysis is promising, the C - H bond activation mechanism remains elusive. Herein, we report value-added coupling products from a wide variety of biomass and fossil-derived reagents, formed via C - H bond activation over zinc-indium-sulfides (Zn-In-S). Contrary to the commonly accepted stepwise electron-proton transfer pathway (PE-ET) for semiconductors, our experimental and theoretical studies evidence a concerted proton-coupled electron transfer (CPET) pathway. A pioneering microkinetic study, considering the relevant elementary steps of the surface chemistry, reveals a faster C - H activation with Zn-In-S because of circumventing formation of a charged radical, as it happens in PE-ET where it retards the catalysis due to strong site adsorption. For CPET over Zn-In-S, H abstraction, forming a neutral radical, is rate-limiting, but having lower energy barriers than that of PE-ET. The rate expressions derived from the microkinetics provide guidelines to rationally design semiconductor catalysis, e.g., for C - H activation, that is based on the CPET mechanism.

2.
Nat Commun ; 15(1): 4453, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789454

RESUMEN

Photocatalytic coupling of methane to ethane and ethylene (C2 compounds) offers a promising approach to utilizing the abundant methane resource. However, the state-of-the-art photocatalysts usually suffer from very limited C2 formation rates. Here, we report our discovery that the anatase TiO2 nanocrystals mainly exposing {101} facets, which are generally considered less active in photocatalysis, demonstrate surprisingly better performances than those exposing the high-energy {001} facet. The palladium co-catalyst plays a pivotal role and the Pd2+ site on co-catalyst accounts for the selective C2 formation. We unveil that the anatase {101} facet favors the formation of hydroxyl radicals in aqueous phase near the surface, where they activate methane molecules into methyl radicals, and the Pd2+ site participates in facilitating the adsorption and coupling of methyl radicals. This work provides a strategy to design efficient nanocatalysts for selective photocatalytic methane coupling by reaction-space separation to optimize heterogeneous-homogeneous reactions at solid-liquid interfaces.

3.
Adv Mater ; : e2402780, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661112

RESUMEN

The high cost of proton exchange membrane water electrolysis (PEMWE) originates from the usage of precious materials, insufficient efficiency, and lifetime. In this work, an important degradation mechanism of PEMWE caused by dynamics of ionomers over time in anode catalyst layer (ACL), which is a purely mechanical degradation of microstructure, is identified. Contrary to conventional understanding that the microstructure of ACL is static, the micropores are inclined to be occupied by ionomers due to the localized swelling/creep/migration, especially near the ACL/PTL (porous transport layer) interface, where they form transport channels of reactant/product couples. Consequently, the ACL with increased ionomers at PTL/ACL interface exhibit rapid and continuous degradation. In addition, a close correlation between the microstructure of ACL and the catalyst ink is discovered. Specifically, if more ionomers migrate to the top layer of the ink, more ionomers accumulate at the ACL/PEM interface, leaving fewer ionomers at the ACL/PTL interface. Therefore, the ionomer distribution in ACL is successfully optimized, which exhibits reduced ionomers at the ACL/PTL interface and enriches ionomers at the ACL/PEM interface, reducing the decay rate by a factor of three when operated at 2.0 A cm-2 and 80 °C. The findings provide a general way to achieve low-cost hydrogen production.

4.
ACS Catal ; 13(7): 5007-5019, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37066041

RESUMEN

The oxygen evolution reaction (OER) is the performance-limiting step in the process of water splitting. In situ electrochemical conditioning could induce surface reconstruction of various OER electrocatalysts, forming reactive sites dynamically but at the expense of fast cation leaching. Therefore, achieving simultaneous improvement in catalytic activity and stability remains a significant challenge. Herein, we used a scalable cation deficiency-driven exsolution approach to ex situ reconstruct a homogeneous-doped cobaltate precursor into an Ir/CoO/perovskite heterojunction (SCI-350), which served as an active and stable OER electrode. The SCI-350 catalyst exhibited a low overpotential of 240 mV at 10 mA cm-2 in 1 M KOH and superior durability in practical electrolysis for over 150 h. The outstanding activity is preliminarily attributed to the exponentially enlarged electrochemical surface area for charge accumulation, increasing from 3.3 to 175.5 mF cm-2. Moreover, density functional theory calculations combined with advanced spectroscopy and 18O isotope-labeling experiments evidenced the tripled oxygen exchange kinetics, strengthened metal-oxygen hybridization, and engaged lattice oxygen oxidation for O-O coupling on SCI-350. This work presents a promising and feasible strategy for constructing highly active oxide OER electrocatalysts without sacrificing durability.

5.
Chem Commun (Camb) ; 59(38): 5737-5740, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37092587

RESUMEN

Metal NP @ metal-organic frameworks (MOFs) are widely used in electrocatalysis. However, many of the MOFs are poorly conductive. Here, we loaded bismuth (Bi) into a Zr-based MOF of the UiO structure that is active for CO2 reduction to formate and found that a moderate conductivity of the nanosized MOFs is sufficient to support a reasonably high catalytic current density. This finding allows simpler catalyst design and quantitative rationalization of MOF electrocatalysis.

6.
Angew Chem Int Ed Engl ; 62(25): e202303405, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37085959

RESUMEN

Photo-driven CH4 conversion to multi-carbon products and H2 is attractive but challenging, and the development of efficient catalytic systems is critical. Herein, we construct a solar-energy-driven redox cycle for combining CH4 conversion and H2 production using iron ions. A photo-driven iron-induced reaction system was developed, which is efficient at selective coupling of CH4 as well as conversion of benzene and cyclohexane under mild conditions. For CH4 conversion, 94 % C2 selectivity and a C2 H6 formation rate of 8.4 µmol h-1 is achieved. Mechanistic studies reveal that CH4 coupling is induced by hydroxyl radical, which is generated by photo-driven intermolecular charge migration of an Fe3+ complex. The delicate coordination structure of the [Fe(H2 O)5 OH]2+ complex ensures selective C-H bond activation and C-C coupling of CH4 . The produced Fe2+ can be used to reduce the potential for electrolytic H2 production, and then turns back into Fe3+ , forming an energy-saving and sustainable recyclable system.


Asunto(s)
Hierro , Metano , Hierro/química , Metano/química , Etano/química , Oxidación-Reducción , Radical Hidroxilo
7.
Chemistry ; 29(20): e202203228, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454216

RESUMEN

The electrochemical process of coupling electrocatalytic CO2 reduction and organic conversion reaction can effectively reduce the reaction overpotential and obtain value-added chemicals. Moreover, because of the diversity of substrates and the designability of coupling forms, more and more attention has been paid to this field. This review systematically summarizes the research progress of coupling electrolysis in recent years, (1) co-electrolysis of CO2 and organics at the cathode to obtain specific products with high selectivity, (2) replacing traditional anodic oxygen evolution reaction (OER) with other valuable oxidation reactions to improve energy utilization efficiency and economic benefits of CO2 conversion, (3) in an electrolytic cell without membrane, the cathode and anode jointly transform CO2 and organics to redox products. We hope that the examples and insights on coupling electrolysis introduced in this review can inspire researchers to further explore and innovate in this direction.

8.
Adv Mater ; 35(5): e2205782, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36427207

RESUMEN

Although there are many studies on photocatalytic environmental remediation, hydrogen evolution, and chemical transformations, less success has been achieved for the synthesis of industrially important and largely demanded bulk chemicals using semiconductor photocatalysis, which holds great potential to drive unique chemical reactions that are difficult to implement by the conventional heterogeneous catalysis. The performance of semiconductors used for photochemical synthesis is, however, usually unsatisfactory due to limited efficiencies in light harvesting, charge-carrier separation, and surface reactions. The precise construction of heterogeneous photocatalysts to facilitate these processes is an attractive but challenging goal. Here, single-atom rhodium-doped metal sulfide nanorods composed of alternately stacked wurtzite/zinc-blende segments are successfully designed and fabricated, which demonstrate record-breaking efficiencies for visible light-driven preferential activation of C-H bond in methanol to form ethylene glycol (EG), a key bulk chemical used for the production of polyethylene terephthalate (PET) polymer. The wurtzite/zinc-blende heterojunctions lined regularly in one dimension accelerate the charge-carrier separation and migration. Single-atom rhodium selectively deposited onto the wurtzite segment with photogenerated holes accumulated facilitates methanol adsorption and C-H activation. The present work paves the way to harnessing photocatalysis for bulk chemical synthesis with structure-defined semiconductors.

9.
Angew Chem Int Ed Engl ; 62(3): e202214959, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36307930

RESUMEN

The renewable-electricity-driven CO2 reduction to formic acid would contribute to establishing a carbon-neutral society. The current catalyst suffers from limited activity and stability under high selectivity and the ambiguous nature of active sites. Herein, we report a powerful Bi2 S3 -derived catalyst that demonstrates a current density of 2.0 A cm-2 with a formate Faradaic efficiency of 93 % at -0.95 V versus the reversible hydrogen electrode. The energy conversion efficiency and single-pass yield of formate reach 80 % and 67 %, respectively, and the durability reaches 100 h at an industrial-relevant current density. Pure formic acid with a concentration of 3.5 mol L-1 has been produced continuously. Our operando spectroscopic and theoretical studies reveal the dynamic evolution of the catalyst into a nanocomposite composed of Bi0 clusters and Bi2 O2 CO3 nanosheets and the pivotal role of Bi0 -Bi2 O2 CO3 interface in CO2 activation and conversion.

10.
J Am Chem Soc ; 144(45): 20895-20902, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36345048

RESUMEN

Electrochemical conversion of propene is a promising technique for manufacturing commodity chemicals by using renewable electricity. To achieve this goal, we still need to develop high-performance electrocatalysts for propene electrooxidation, which highly relies on understanding the reaction mechanism at the molecular level. Although the propene oxidation mechanism has been well investigated at the solid/gas interface under thermocatalytic conditions, it still remains elusive at the solid/liquid interface under an electrochemical environment. Here, we report the mechanistic studies of propene electrooxidation on PdO/C and Pd/C catalysts, considering that the Pd-based catalyst is one of the most promising electrocatalytic systems. By electrochemical in situ attenuated total reflection Fourier transform infrared spectroscopy, a distinct reaction pathway was observed compared with conventional thermocatalysis, emphasizing that propene can be dehydrogenated at a potential higher than 0.80 V, and strongly adsorb via µ-C═CHCH3 and µ3-η2-C═CHCH3 configuration on PdO and Pd, respectively. The µ-C═CHCH3 is via bridge bonds on adjacent Pd and O atoms on PdO, and it can be further oxidized by directly taking surface oxygen from PdO, verified by the H218O isotope-edited experiment. A high surface oxygen content on PdO/C results in a 3 times higher turnover frequency than that on Pd/C for converting propene into propene glycol. This finding highlights the different reaction pathways under an electrochemical environment, which sheds light on designing next-generation electrocatalysts for propene electrooxidation.

11.
Sensors (Basel) ; 22(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36298115

RESUMEN

In the Industry 4.0 era, with the continuous integration of industrial field systems and upper-layer facilities, interconnection between industrial wireless sensor networks (IWSNs) and industrial Internet networks is becoming increasingly pivotal. However, when deployed in real industrial scenarios, IWSNs are often connected to legacy control systems, through some wired industrial network protocols via gateways. Complex protocol translation is required in these gateways, and semantic interoperability is lacking between IWSNs and the industrial Internet. To fill this gap, our study focuses on realizing the interconnection and interoperability between an IWSN and the industrial Internet. The Open Platform Communications Unified Architecture (OPC UA) and joint publish/subscribe (pub/sub) communication between the two networks are used to achieve efficient transmission. Taking the Wireless Networks for Industrial Automation Process Automation (WIA-PA), a typical technology in IWSNs, as an example, we develop a communication architecture that adopts OPC UA as a communication bridge to integrate the WIA-PA network into the industrial Internet. A WIA-PA virtualization method for OPC UA pub/sub data sources is designed to solve the data mapping problem between WIA-PA and OPC UA. Then, the WIA-PA/OPC UA joint pub/sub transmission mechanism and the corresponding configuration mechanism are designed. Finally, a laboratory-level verification system is implemented to validate the proposed architecture, and the experimental results demonstrate its promising feasibility and capability.

12.
Angew Chem Int Ed Engl ; 61(51): e202213423, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36289577

RESUMEN

Electroreduction of CO2 (CO2 RR) into high value-added chemicals is an attractive route to achieve carbon neutrality. However, the development of an efficient catalyst for CO2 RR is still largely by trial-and-error and is very time-consuming. Herein, we built an electrocatalyst testing platform featuring a home-built automatic flow cell to accelerate the discovery of efficient catalysts. A fast screening of 109 Cu-based bimetallic catalysts in only 55 h identifies Mg combined with Cu as the best electrocatalyst for CO2 to C2+ products. The thus designed Mg-Cu catalyst achieves a Faradaic efficiency (FE) of C2+ products up to 80 % with a current density of 1.0 A cm-2 at -0.77 V versus reversible hydrogen electrode (RHE). Systematic experiments with in situ spectroelectrochemistry analyses show that Mg2+ species stabilize Cu+ sites during CO2 RR and promote the CO2 activation, thus enhancing the *CO coverage to promote C-C coupling.

13.
Chem Soc Rev ; 50(23): 12897-12914, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34609390

RESUMEN

The electrocatalytic reduction of CO2 with H2O to multi-carbon (C2+) compounds, in particular, C2+ olefins and oxygenates, which have versatile applications in the chemical and energy industries, holds great potential to mitigate the depletion of fossil resources and abate carbon emissions. There are two major routes for the electrocatalytic CO2 reduction to C2+ compounds, i.e., the direct route and the indirect route via CO. The electrocatalytic CO2 reduction to CO has been commercialised with solid oxide electrolysers, making the indirect route via CO to C2+ compounds also a promising alternative. This tutorial review focuses on the similarities and differences in the electrocatalytic CO2 and CO reduction reactions (CO2RR and CORR) into C2+ compounds, including C2H4, C2H5OH, CH3COO- and n-C3H7OH, over Cu-based catalysts. First, we introduce the fundamental aspects of the two electrocatalytic reactions, including the cathode and anode reactions, electrocatalytic reactors and crucial performance parameters. Next, the reaction mechanisms, in particular, the C-C coupling mechanism, are discussed. Then, efficient catalysts and systems for these two reactions are critically reviewed. We analyse the key factors that determine the selectivity, activity and stability for the electrocatalytic CO2RR and CORR. Finally, the opportunities, challenges and future trends in the electrocatalytic CO2RR and CORR are proposed. These insights will offer guidance for the design of industrial-relevant catalysts and systems for the synthesis of C2+ olefins and oxygenates.


Asunto(s)
Dióxido de Carbono , Carbono , Catálisis , Compuestos Orgánicos
14.
Adv Mater ; 33(50): e2007129, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34117812

RESUMEN

Transition metal sulfides are an extraordinarily vital class of semiconductors with a wide range of applications in the photocatalytic field. A great number of recent advances in photocatalytic transformations of lignocellulosic biomass, the largest renewable carbon resource, into high-quality fuels and value-added chemicals has been achieved over metal sulfide semiconductors. Herein, the progress and breakthroughs in metal-sulfide-based photocatalytic systems for lignocellulose valorization with an emphasis on selective depolymerization of lignin and oxidative coupling of some important bioplatforms are highligted. The key issues that control reaction pathways and mechanisms are carefully examined. The functions of metal sulfides in the elementary reactions, including CO-bond cleavage, selective oxidations, CC coupling, and CH activation, are discussed to offer insights to guide the rational design of active and selective photocatalysts for sustainable chemistry. The prospects of sulfide photocatalysts in biomass valorization are also analyzed and briefly discussed.

15.
Chem Soc Rev ; 49(17): 6198-6223, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32756629

RESUMEN

As the largest renewable carbon resource, lignocellulosic biomass has great potential to replace fossil resources for the production of high-value chemicals, in particular organic oxygenates. Catalytic transformations of lignocellulosic biomass using solar energy have attracted much recent attention, because of unique reactive species and reaction patterns induced by photo-excited charge carriers or photo-generated reactive species as well as the mild reaction conditions, which may enable the precise cleavage of target chemical bonds or selective functionalisation of specific functional groups with other functional groups kept intact. Here, we present a critical review on recent advances in the photocatalytic transformation of lignocellulosic biomass with an emphasis on photocatalytic cleavage of C-O and C-C bonds in major components of lignocellulosic biomass, including polysaccharides and lignin, and the photocatalytic valorisation of some key platform molecules. The key issues that control the reaction paths and the reaction mechanism will be discussed to offer insights to guide the design of active and selective photocatalytic systems for biomass valorisation under mild conditions. The challenges and future opportunities in photocatalytic transformations of lignocellulosic biomass are also analysed.


Asunto(s)
Biomasa , Lignina/química , Procesos Fotoquímicos , Biocombustibles
16.
Chem Commun (Camb) ; 56(12): 1776-1779, 2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-31960837

RESUMEN

Herein, an environmentally friendly CoP/Zn2In2S5 catalyst is reported as a visible-light photocatalyst for the selective activation of the α-C-H bond of methanol to generate ethylene glycol with a selectivity of as high as 90%. The catalytic system also illustrates the first example of visible-light-driven dehydrogenative coupling of ethanol to 2,3-butanediol.

17.
ChemSusChem ; 12(22): 5023-5031, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31583821

RESUMEN

Lignin is the most abundant source of renewable aromatics. Catalytic valorization of lignin into functionalized aromatics is attractive but challenging. Photocatalysis is a promising sustainable approach. The strategies for designing well-performing photocatalysts are desired but remain limited. Herein, a facile energy band engineering strategy for promoting the photocatalytic activity of zinc-indium-sulfide (Znm In2 Sm+3 ) for cleavage of the lignol ß-O-4 bond under mild conditions was developed. The energy band structure of Znm In2 Sm+3 could be tuned by controlling the atomic ratio of Zn/In. It was found that Zn4 In2 S7 performed best for cleavage of the ß-O-4 bond under visible-light irradiation, owing to its appropriate energy band structure for offering adequate visible-light absorption and suitable redox capability. Functionalized aromatic monomers with near 18.4 wt % yield could be obtained from organosolv birch lignin. Mechanistic studies revealed that the ß-O-4 bond was efficiently cleaved mainly through a one-step redox-neutral pathway via a Cα radical intermediate. The thiol groups on the surface of Zn4 In2 S7 played a key role in cleavage of the ß-O-4 bond.

18.
Chem Commun (Camb) ; 55(74): 11017-11020, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31424070

RESUMEN

Synthesis of adipic acid, a key monomer of nylon-66 and polyurethane, from biomass is highly attractive for establishing green and sustainable chemical processes. Here, we report that zirconia-supported rhenium oxide (ReOx/ZrO2) efficiently catalyses the deoxydehydration of cellulose-derived d-glucaric acid, offering adipic acid ester with a yield of 82% by combining with a Pd/C catalyst in subsequent reactions.


Asunto(s)
Adipatos/síntesis química , Ésteres/síntesis química , Renio/química , Circonio/química , Biomasa , Carbono/química , Catálisis , Ácido Glucárico/química , Lactonas/química , Oxidación-Reducción , Paladio/química , Estereoisomerismo
19.
Chem Commun (Camb) ; 55(55): 8013-8016, 2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31225852

RESUMEN

The conversion of biomass-derived molecules into adipic acid represents a highly attractive green route for sustainable production of adipic acid, a key monomer of nylon 66 and polyurethane. Here, we report the direct synthesis of adipic acid from 2,5-furandicarboxylic acid, which can be obtained from cellulose-based 5-hydroxymethylfurfural, using a niobic acid-supported platinum catalyst under hydrogen in water.

20.
Nanoscale ; 11(26): 12530-12536, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31179477

RESUMEN

The solar energy-driven reduction of CO2 and H2O to syngas (H2/CO), an important platform to produce chemicals, is of significance for alleviating greenhouse gas emission and utilizing sustainable solar energy. Here, we report a facile method for the photoelectrocatalytic reduction of CO2 and H2O to syngas over an Ag nanoparticle (NP) modified p-Si nanowire array catalyst. The particle size of Ag significantly influences the activity of CO2 reduction to CO. The H2/CO molar ratio in reduction products can be tuned in the range from 1 to 4 by controlling the size of Ag NPs from 4.2 to 16 nm. The adsorption strength of CO on the catalyst was found to decline with the increase in the size of Ag NPs. The Ag NPs of 8.2 nm, which possess a moderate CO adsorption strength, exhibit the maximum production of CO with the H2/CO ratio of 2/1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...