Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Thorac Cancer ; 15(7): 538-549, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38268309

RESUMEN

BACKGROUND: To explore the role and mechanism of triptolide in regulating esophageal squamous cell carcinoma (ESCC) progression by mediating the circular RNA (circRNA)-related pathway. METHODS: The expression levels of circNOX4, miR-153-3p and special AT-rich sequence binding protein-1 (SATB1) were measured by qRT-PCR. Cell proliferation was confirmed by cell counting kit-8 assay and colony formation assay. Flow cytometry was employed to measure cell apoptosis and cell cycle process. Moreover, cell migration and invasion were detected using transwell assay. The protein levels of epithelial-mesenchymal transformation markers and SATB1 were determined by western blot analysis. Furthermore, dual-luciferase reporter assay and RIP assay were performed to confirm the interaction between miR-153-3p and circNOX4 or SATB1. Xenograft tumor models were built to verify the effects of triptolide and circNOX4 on ESCC tumor growth. RESULTS: CircNOX4 was highly expressed in ESCC tissues and cells, and its expression could be reduced by triptolide. Triptolide could inhibit ESCC proliferation, cell cycle process, migration, invasion, EMT process, and promote apoptosis, while these effects were reversed by circNOX4 overexpression. MiR-153-3p could be sponged by circNOX4, and the promotion effect of circNOX4 on the progression of triptolide-treated ESCC cells was abolished by miR-153-3p overexpression. SATB1 was a target of miR-153-3p. Also, SATB1 knockdown reversed the enhancing effect of miR-153-3p inhibitor on the progression of triptolide-treated ESCC cells. Triptolide reduced ESCC tumor growth by regulating the circNOX4/miR-153-3p/SATB1 axis. CONCLUSION: Triptolide could hinder ESCC progression, which was mainly achieved by regulating the circNOX4/miR-153-3p/SATB1 axis.


Asunto(s)
Diterpenos , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas de Unión a la Región de Fijación a la Matriz , MicroARNs , Fenantrenos , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Transducción de Señal , Compuestos Epoxi
2.
Thorac Cancer ; 13(12): 1795-1805, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35567340

RESUMEN

BACKGROUND: Esophageal cancer is a relatively rare cancer. However, its death rate is not to be taken lightly. Accumulating evidence indicates circular RNA (circRNA) is implicated in cancer development. The objective of this study was to unveil the role of circ_0001273 in esophageal cancer (EC). METHODS: For expression analysis of circ_0001273, miR-622 and solute carrier family 1 member 5 (SLC1A5), quantitative real-time PCR (qPCR) and Western blot were conducted. Cell proliferation was evaluated by cell counting kit-8 (CCK-8), EdU and colony formation assays. Cell apoptosis and cell migration were investigated using flow cytometry assay and wound healing assay. Glutamine metabolism was assessed by glutamine consumption and glutamate production using matched kits. The predicted binding relationship between miR-622 and circ_0001273 or SLC1A5 was validated by dual-luciferase reporter assay. An in vivo xenograft model was established to determine the role of circ_0001273 on tumor growth. RESULTS: Circ_0001273 was upregulated in EC tumor tissues and cells. Knockdown of circ_0001273 repressed EC cell proliferation, migration, epithelial-mesenchymal transition (EMT) and glutamine metabolism. Circ_0001273 knockdown also blocked tumor development in animal models. MiR-622 was targeted by circ_0001273, and its inhibition reversed the functional effects of circ_0001273 knockdown. SLC1A5 was a target gene of miR-622, and circ_0001273 targeted miR-622 to positively regulate SLC1A5 expression. The inhibitory effects of miR-622 enrichment on EC cell proliferation, migration, EMT and glutamine metabolism were recovered by SLC1A5 overexpression. CONCLUSION: Circ_0001273 high expression contributed to EC progression via modulating the miR-622/SLC1A5 signaling axis.


Asunto(s)
Neoplasias Esofágicas , MicroARNs , ARN Circular/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Neoplasias Esofágicas/patología , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Humanos , MicroARNs/metabolismo , Antígenos de Histocompatibilidad Menor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...