Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2311151, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456785

RESUMEN

As vitally prospective candidates for next-generation energy storage systems, room-temperature sodium-sulfur (RT-Na/S) batteries continue to face obstacles in practical implementation due to the severe shuttle effect of sodium polysulfides and sluggish S conversion kinetics. Herein, the study proposes a novel approach involving the design of a B, N co-doped carbon nanotube loaded with highly dispersed and electron-deficient cobalt (Co@BNC) as a highly conductive host for S, aiming to enhance adsorption and catalyze redox reactions. Crucially, the pivotal roles of the carbon substrate in prompting the electrocatalytic activity of Co are elucidated. The experiments and density functional theory (DFT) calculations both demonstrate that after B doping, stronger chemical adsorption toward polysulfides (NaPSs), lower polarization, faster S conversion kinetics, and more complete S transformation are achieved. Therefore, the as-assembled RT-Na/S batteries with S/Co@BNC deliver a high reversible capacity of 626 mAh g-1 over 100 cycles at 0.1 C and excellent durability (416 mAh g-1 over 600 cycles at 0.5 C). Even at 2 C, the capacity retention remains at 61.8%, exhibiting an outstanding rate performance. This work offers a systematic way to develop a novel Co electrocatalyst for RT-Na/S batteries, which can also be effectively applied to other transition metallic electrocatalysts.

2.
Nanotechnology ; 34(47)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37557085

RESUMEN

Room-temperature sodium-sulfur batteries are still hampered by severe shuttle effects and sluggish kinetics. Most of the sulfur hosts require high cost and complex synthesis process. Herein, a facile method is proposed to prepare a phosphorous doped porous carbon (CSBP) with abundant defect sites from camellia shell by oxidation pretreatment combined with H3PO4activation. The pretreatment can introduce pores and adjust the structure of biochar precursor, which facilitates the further activation of H3PO4and effectively avoids the occurrence of large agglomeration. Profiting from the synergistic effects of physical confinement and doping effect, the prepared CSBP/S cathode delivers a high reversible capacity of 804 mAh g-1after 100 cycles at 0.1 C and still maintains an outstanding capacity of 458 mAh g-1after 500 cycles at 0.5 C (1 C = 1675 mA g-1). This work provides new insights into the rational design of the microstructures of carbon hosts for high-performance room temperature sodium-sulfur batteries.

3.
J Colloid Interface Sci ; 650(Pt B): 1225-1234, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37478739

RESUMEN

Assembling two-dimensional (2D) MXene nanosheets into monolithic three-dimensional (3D) structures is an efficient pathway to transfer the nanoscale properties to practical applications. Nevertheless, the majority of the preparation schemes described in the literature are carried out at relatively high temperatures, which inevitably leads to the notorious high-temperature oxidation issue of MXenes. Preparing MXene-based hydrogels at lower temperatures or even room temperature is of great research importance. In this study, we report a novel and efficient room-temperature gelation method for fabricating 3D macro-porous Ti3C2Tx MXene/reduced graphene oxide (RGO) hybrid hydrogels, using anhydrous sodium sulfide (Na2S) as the primary reducing agent and l-cysteine as the auxiliary crosslinker. This room-temperature preparation technique successfully prevents the oxidation issue of MXenes and generates porous aerogels with excellent structural robustness after freeze-drying. As the self-standing anode for sodium-ion storage, the optimized 3D Ti3C2Tx MXene/RGO electrode possesses a specific capacity of 152 mAh/g at 0.1 A/g and good cycling stability with no significant capacity degradation after 500 cycles, which is significantly higher than that of the vacuum-filtered MXene film. This work demonstrates a straightforward room-temperature gelation method for constructing 3D MXene-based hydrogels to avoid the oxidation of MXenes, and casts new insight on the mechanism of the graphene oxide (GO)-assisted gelation.

4.
ACS Nano ; 17(16): 15666-15677, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37523449

RESUMEN

The recycling of scattered light by metals has been emerging as a promising light-manipulation-capture strategy, but how to bring its potential into better play remains to be explored. Herein, we present that constructing dual metal/high-refractive-index dielectric interfaces within the SiO2 core@TiO2 shell-Pd satellite@TiO2 shell effectively strengthens both the scattering efficiency of the dielectric SiO2 support and electric field confinement. Consequently, the absorption of Pd toward near-field scattered light and the interfacial charge carrier separation are both enhanced. The synergy of these effects leads to boosted photoactivity toward the aerobic oxidation of cyclohexanol to cyclohexanone and the anaerobic reduction of proton for hydrogen evolution under visible-light irradiation as compared to the counterparts with a single metal/dielectric interface and dual metal/dielectric interfaces consisting of low-refractive-index dielectric component. Notably, the similar enhancements in both optical absorption and photoactivity can be achieved through the present dual metal/high-refractive-index dielectric interfaces engineering strategy for other metals, such as Pt nanoparticles. This work presents an instructive avenue to upgrade the optical response of metals and thus the photocatalytic performance by engineering metal/dielectric interfaces.

5.
Nanoscale ; 14(48): 18010-18021, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36441204

RESUMEN

Engineering the spatial separation and transfer of photogenerated charge carriers has been one of the most enduring research topics in the field of photocatalysis due to its crucial role in determining the performances of photocatalysts. Herein, as a proof-of-concept, Ti3C2Tx MXene is coupled with a typical heterojunction of TiO2@CdS through a co-assembly strategy to boost electron pumping towards improving the photocatalytic efficiency. In addition to the band alignment-mediated electron transfer in TiO2@CdS-Ti3C2Tx heterojunctions, the plasmon-induced electric field enhancement of Ti3C2Tx is found to cooperate with the electron-reservoir role of Ti3C2Tx to extract photoinduced electrons. The synergistic dual functions of Ti3C2Tx promote multichannel electron transfer in TiO2@CdS-Ti3C2Tx hybrids to improve the photocatalytic efficiency. These results intuitively show that there is a wide scope to manipulate the spatial separation and transfer of photoinduced electrons by cultivating the fertile ground of Ti3C2Tx toward boosting the efficiency of solar-to-chemical conversion.

6.
Nanomicro Lett ; 14(1): 37, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34919180

RESUMEN

Low-temperature assembly of MXene nanosheets into three-dimensional (3D) robust aerogels addresses the crucial stability concern of the nano-building blocks during the fabrication process, which is of key importance for transforming the fascinating properties at the nanoscale into the macroscopic scale for practical applications. Herein, suitable cross-linking agents (amino-propyltriethoxysilane, Mn2+, Fe2+, Zn2+, and Co2+) as interfacial mediators to engineer the interlayer interactions are reported to realize the graphene oxide (GO)-assisted assembly of Ti3C2Tx MXene aerogel at room temperature. This elaborate aerogel construction not only suppresses the oxidation degradation of Ti3C2Tx but also generates porous aerogels with a high Ti3C2Tx content (87 wt%) and robustness, thereby guaranteeing the functional accessibility of Ti3C2Tx nanosheets and operational reliability as integrated functional materials. In combination with a further sulfur modification, the Ti3C2Tx aerogel electrode shows promising electrochemical performances as the freestanding anode for sodium-ion storage. Even at an ultrahigh loading mass of 12.3 mg cm-2, a pronounced areal capacity of 1.26 mAh cm-2 at a current density of 0.1 A g-1 has been achieved, which is of practical significance. This work conceptually suggests a new way to exert the utmost surface functionalities of MXenes in 3D monolithic form and can be an inspiring scaffold to promote the application of MXenes in different areas.

7.
Nanotechnology ; 33(5)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34670206

RESUMEN

Hard carbon is the most attractive anode material for electrochemical sodium/potassium-ion storage. The preparation of hard carbon spheres directly from the broad sources of biomass is of great interest but barely reported. Herein, we developed a simple two-step hydrothermal method to construct porous carbon microspheres directly from the original waste biomass of camellia shells. The porous carbon microspheres have high specific capacities of 250 mAh g-1and 264.5 mAh g-1at a current density of 100 mA g-1for sodium-ion batteries and potassium-ion batteries, respectively. And it has excellent cycle stability for sodium ions and potassium ions outperforming most reported hard carbons, which is mainly attributed to the microporous structure and spherical morphology. The work paves a way to prepare porous hard carbon spheres directly from biomass for alkali metal-ion batteries.

8.
Small ; 17(49): e2103626, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34708515

RESUMEN

Electrochemical sodium-ion storage has come out as a promising technology for energy storage, where the development of electrode material that affords high volumetric capacity and long-term cycling stability remains highly desired yet a challenge. Herein, Ti3 C2 Tx (MXene)-based films are prepared by using sulfur (S) as the mediator to modulate the surface chemistry and microstructure, generating S-doped mesoporous Ti3 C2 Tx films with high flexibility. The mesoporous architecture offers desirable surface accessibility without significantly sacrificing the high density of Ti3 C2 Tx film. Meanwhile, the surface sulfur doping of Ti3 C2 Tx favors the diffusion of sodium ions. These merits are of critical importance to realize high volumetric capacity of the electrode material. As a consequence, as the freestanding electrode material for electrochemical sodium-ion storage, the S-doped mesoporous Ti3 C2 Tx film exhibits a high volumetric capacity of 625.6 mAh cm-3 at 0.1 A g-1 , which outperforms that of many reported electrodes. Moreover, outstanding rate capability and excellent long-term cycling stability extending 5000 cycles are achieved. The work opens the door for innovative design and rational fabrication of MXene-based films with ultrahigh volumetric capacity for sodium-ion storage.

9.
Angew Chem Int Ed Engl ; 60(50): 26246-26253, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34590399

RESUMEN

The development of high-performance anode materials for potassium-based energy storage devices with long-term cyclability requires combined innovations from rational material design to electrolyte optimization. A three-dimensional K+ -pre-intercalated Ti3 C2 Tx MXene with enlarged interlayer distance was constructed for efficient electrochemical potassium-ion storage. We found that the optimized solvation structure of the concentrated ether-based electrolyte leads to the formation of a thin and inorganic-rich solid electrolyte interphase (SEI) on the K+ -pre-intercalated Ti3 C2 Tx electrode, which is beneficial for interfacial stability and reaction kinetics. As a proof of concept, 3D K+ -Ti3 C2 Tx //activated carbon (AC) potassium-ion hybrid capacitors (PIHCs) were assembled, which exhibited promising electrochemical performances. These results highlight the significant roles of both rational structure design and electrolyte optimization for highly reactive MXene-based anode materials in energy storage devices.

10.
Adv Sci (Weinh) ; 8(6): 2003626, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33747743

RESUMEN

Solar-powered N2 reduction in aqueous solution is becoming a research hotspot for ammonia production. Schottky junctions at the metal/semiconductor interface have been effective to build up a one-way channel for the delivery of photogenerated electrons toward photoredox reactions. However, their applications for enhancing the aqueous phase reduction of N2 to ammonia have been bottlenecked by the difficulty of N2 activation and the competing H2 evolution reaction (HER) at the metal surface. Herein, the application of Bi with low HER activity as a robust cocatalyst for constructing Schottky-junction photocatalysts toward N2 reduction to ammonia is reported. The introduction of Bi not only boosts the interfacial electron transfer from excited photocatalysts due to the built-in Schottky-junction effect at the Bi/semiconductor interface but also synchronously facilitates the on-site N2 adsorption and activation toward solar ammonia production. The unidirectional charge transfer to the active site of Bi significantly promotes the photocatalytic N2-to-ammonia conversion efficiency by 65 times for BiOBr. In addition, utilizing Bi to enhance the photocatalytic ammonia production can be extended to other semiconductor systems. This work is expected to unlock the promise of engineering Schottky junctions toward high-efficiency solar N2-to-ammonia conversion in aqueous phase.

11.
Nanoscale ; 12(2): 1109-1117, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31845943

RESUMEN

The rational design and synthesis of MoS2-based electrocatalysts with desirable active sites for the hydrogen evolution reaction have been actively pursued. Herein, we demonstrate a microwave-assisted steam heating method for the rapid and efficient synthesis of lamellar MoS2-based materials with favorable exposed active edge sites. Based on this new strategy, we have further separately introduced reduced graphene oxide (rGO) and carbon nanotubes (CNTs), two typical carbon allotropes widely used to boost the electrocatalytic activity of MoS2, to comparatively assess the support interactions and their effects on the electrocatalytic activity of MoS2. It was found that as compared to rGO, the CNTs afford favorable support interactions, which not only benefit to suppress the oriented in-plane growth of MoS2 to maximize the exposed edge sites but also ensure the maintainence of their intrinsic activity, thereby synergistically facilitating the exertion of the potential of MoS2 for HER. Our work conceptually highlights the importance of the support interactions for taming the active edge sites of MoS2 and is expected to inspire the rational design of layered metal dichalcogenide-based electrocatalysts with favorable active edges for HER.

12.
Sci Rep ; 9(1): 15032, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31636278

RESUMEN

Controllable conversion of biomass to value-added carbon materials is attractive towards a wide variety of potential applications. Herein, hydrothermal treatment and KOH activation are successively employed to treat the cheap and abundant camellia oleifera shell as a new carbon raw material. It is shown that this stepwise activation process allows the production of porous nitrogen-doped carbon with optimized surface chemistry and porous structure compared to the counterparts prepared by a single activation procedure. Benefiting from the modulated porous structure, the as-produced porous nitrogen-doped carbon electrode delivered a high reversible capacity of 1080 mAh g-1 at a current density of 100 mA g-1, which is 3.3 and 5.8 times as high as that of the carbon materials prepared by bare hydrothermal treatment or KOH activation, respectively. Moreover, the optimized surface composition of the porous nitrogen-doped carbon endows it with a highest initial Coulombic efficiency among the three samples, showing great potentials for practical applications. This work is expected to pave a new avenue to upgrade biomass to carbon materials with tunable surface properties and microstructures for target applications.

13.
RSC Adv ; 9(35): 20424-20431, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35514708

RESUMEN

A comparatively facile and ecofriendly process has been developed to synthesize porous carbon materials from Camellia oleifera shells. Potassium carbonate solution (K2CO3) impregnation is introduced to modify the functional groups on the surface of Camellia oleifera shells, which may play a role in promoting the development of pore structure during carbonization treatment. Moreover, a small amount of naturally embedded nitrogen and sulfur in the Camellia oleifera shells can also bring about the formation of pores. The Camellia oleifera shell-derived carbon has a large specific surface area of 1479 m2 g-1 with a total pore volume of 0.832 cm3 g-1 after being carbonized at 900 °C for 1 h. Furthermore, when used as an anode for lithium-ion batteries, the sample shows superior electrochemical performance with a specific capacity of 483 mA h g-1 after 100 cycles measured at 200 mA g-1 current density. Surprisingly, the specific capacity is even gradually increased with cycling. In addition, this sample exhibits almost 100% retention capacity after 250 cycles at a current density of 200 mA g-1.

14.
ACS Nano ; 13(1): 295-304, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30507143

RESUMEN

Assembly of two-dimensional (2D) layered structures into three-dimensional (3D) macroscopic hydrogel has been an enduring attracting research theme. However, the anisotropic intersheet cross-linking to form Ti3C2T x MXene-based hydrogel remains intrinsically challenging because of the superior hydrophilic nature of 2D Ti3C2T x. Herein, Ti3C2T x MXene is ingeniously assembled into the 3D macroscopic hydrogel under mild conditions by a graphene oxide (GO)-assisted self-convergence process. During the process, GO is reduced to reduced graphene oxide (RGO) by virtue of the reduction ability of Ti3C2T x, leading to the partial removal of hydrophilic oxygen-containing groups and an increase of the hydrophobicity and the π-conjugated structures of RGO, which enables the assembly of RGO into a 3D RGO framework. Simultaneously, Ti3C2T x is self-converged to be incorporated into the RGO framework by intimate interfacial interactions, thereby generating Ti3C2T x-based hydrogel. The hydrogel with interconnected porous structure holds great potential as a promising material platform for photoredox catalysis. With the incorporation of Eosin Y photosensitizer, the functional Ti3C2T x-based hydrogel exhibits enhanced photoactivity compared to the powder counterpart and features easy operability. This work enriches the rational utilization of GO/MXene colloid chemistry to design Ti3C2T x MXene-based hydrogels with improved overall efficacy in practical applications.

15.
Angew Chem Int Ed Engl ; 57(40): 13082-13085, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30088851

RESUMEN

Ultrathin two-dimensional (2D) nanostructures have attracted increasing research interest for energy storage and conversion. However, tackling the key problem of lattice mismatch inducing the instability of ulreathin nanostructures during phase transformations is still a critical challenge. Herein, we describe a facile and scalable strategy for the growth of ultrathin nickel phosphide (Ni2 P) nanosheets (NSs) with exposed (001) facets. We show that single-layer functionalized graphene with residual oxygen-containing groups and a large lateral size contributes to reducing the lattice strain during phosphorization. The resulting nanostructure exhibits remarkable hydrogen evolution activity and good stability under alkaline conditions.

16.
Angew Chem Int Ed Engl ; 57(7): 1846-1850, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29292844

RESUMEN

Two-dimensional (2D) heterostructured materials, combining the collective advantages of individual building blocks and synergistic properties, have spurred great interest as a new paradigm in materials science. The family of 2D transition-metal carbides and nitrides, MXenes, has emerged as an attractive platform to construct functional materials with enhanced performance for diverse applications. Here, we synthesized 2D MoS2 -on-MXene heterostructures through in situ sulfidation of Mo2 TiC2 Tx MXene. The computational results show that MoS2 -on-MXene heterostructures have metallic properties. Moreover, the presence of MXene leads to enhanced Li and Li2 S adsorption during the intercalation and conversion reactions. These characteristics render the as-prepared MoS2 -on-MXene heterostructures stable Li-ion storage performance. This work paves the way to use MXene to construct 2D heterostructures for energy storage applications.

17.
Chem Sci ; 9(47): 8876-8882, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30627406

RESUMEN

Three-dimensional graphene (3DG) is promising for constructing monolithic photocatalysts for solar energy conversion. However, the structure-associated light-shielding effect and the intricate porous architecture of 3DG result in intrinsic limitations in light penetration and mass transfer over 3DG supported hybrids, which restricts their photocatalytic efficiency. Here, taking 3DG-organic hybrids as examples, we report a geometry regulation strategy to minimize such structural restrictions, which not only favors the interaction between light and the photoactive component, but also facilitates reactant adsorption over the 3DG-organic hybrids, thereby cooperatively boosting their photoactivity. Such an adaptive geometry regulation strategy is expected to guide the rational utilization of 3DG to construct high-performance hybrids for photoredox catalysis.

18.
Adv Mater ; 29(37)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28741708

RESUMEN

2D transition metal carbides and nitrides, named MXenes, are attracting increasing attentions and showing competitive performance in energy storage devices including electrochemical capacitors, lithium- and sodium-ion batteries, and lithium-sulfur batteries. However, similar to other 2D materials, MXene nanosheets are inclined to stack together, limiting the device performance. In order to fully utilize MXenes' electrochemical energy storage capability, here, processing of 2D MXene flakes into hollow spheres and 3D architectures via a template method is reported. The MXene hollow spheres are stable and can be easily dispersed in solvents such as water and ethanol, demonstrating their potential applications in environmental and biomedical fields as well. The 3D macroporous MXene films are free-standing, flexible, and highly conductive due to good contacts between spheres and metallic conductivity of MXenes. When used as anodes for sodium-ion storage, these 3D MXene films exhibit much improved performances compared to multilayer MXenes and MXene/carbon nanotube hybrid architectures in terms of capacity, rate capability, and cycling stability. This work demonstrates the importance of MXene electrode architecture on the electrochemical performance and can guide future work on designing high-performance MXene-based materials for energy storage, catalysis, environmental, and biomedical applications.

19.
Chemistry ; 23(51): 12613-12619, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28683155

RESUMEN

Three-dimensional metal carbide MXene/reduced graphene oxide hybrid nanosheets are prepared and applied as a cathode host material for lithium-sulfur batteries. The composite cathodes are obtained through a facile and effective two-step liquid-phase impregnation method. Owing to the unique 3 D layer structure and functional 2 D surfaces of MXene and reduced graphene oxide nanosheets for effective trapping of sulfur and lithium polysulfides, the MXene/reduced graphene oxide/sulfur composite cathodes deliver a high initial capacity of 1144.2 mAh g-1 at 0.5 C and a high level of capacity retention of 878.4 mAh g-1 after 300 cycles. It is demonstrated that hybrid metal carbide MXene/reduced graphene oxide nanosheets could be a promising cathode host material for lithium-sulfur batteries.

20.
J Colloid Interface Sci ; 499: 17-32, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28363101

RESUMEN

Rechargeable batteries, such as lithium-ion and sodium-ion batteries, have been considered as promising energy conversion and storage devices with applications ranging from small portable electronics, medium-sized power sources for electromobility, to large-scale grid energy storage systems. Wide implementations of these rechargeable batteries require the development of electrode materials that can provide higher storage capacities than current commercial battery systems. Within this greater context, this review will present recent progresses in the development of the 2D material as anode materials for battery applications represented by studies conducted on graphene, molybdenum disulfide, and MXenes. This review will also discuss remaining challenges and future perspectives of 2D materials in regards to a full utilization of their unique properties and interactions with other battery components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...