Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 478: 135493, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173381

RESUMEN

Aflatoxin is one of the most notorious mycotoxins, of which aflatoxin B1 (AFB1) is the most harmful and prevalent. Microbes play a crucial role in the environment for the biotransformation of AFB1. In this study, a bacterial consortium, HS-1, capable of degrading and detoxifying AFB1 was obtained. Here, we combined multi-omics and cultivation-based techniques to elucidate AFB1 biotransformation by consortium HS-1. Co-occurrence network analysis revealed that the key taxa responsible for AFB1 biotransformation in consortium HS-1 mainly belonged to the phyla Proteobacteria and Actinobacteria. Moreover, metagenomic analysis showed that diverse microorganisms, mainly belonging to the phyla Proteobacteria and Actinobacteria, carry key functional enzymes involved in the initial step of AFB1 biotransformation. Metatranscriptomic analysis indicated that Paracoccus-related bacteria were the most active in consortium HS-1. A novel bacterium, Paracoccus sp. strain XF-30, isolated from consortium HS-1, contains a novel dye-decolorization peroxidase (DyP) enzyme capable of effectively degrading AFB1. Taxonomic profiling by bioinformatics revealed that DyP, which is involved in the initial biotransformation of AFB1, is widely distributed in metagenomes from various environments, primarily taxonomically affiliated with Proteobacteria and Actinobacteria. The in-depth examination of AFB1 biotransformation in consortium HS-1 will help us to explore these crucial bioresources more sensibly and efficiently.


Asunto(s)
Actinobacteria , Aflatoxina B1 , Biotransformación , Proteobacteria , Aflatoxina B1/metabolismo , Actinobacteria/metabolismo , Actinobacteria/genética , Proteobacteria/metabolismo , Proteobacteria/genética , Paracoccus/metabolismo , Paracoccus/genética , Biodegradación Ambiental
2.
Front Microbiol ; 15: 1391863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881652

RESUMEN

Plant-microbe-soil interactions control over the forest biogeochemical cycling. Adaptive plant-soil interactions can shape specific microbial taxa in determining the ecosystem functioning. Different trees produce heterogeneous soil properties and can alter the composition of soil microbial community, which is relevant to the forest internal succession containing contrasting stand types such as the pine-oak forests. Considering representative microbial community characteristics are recorded in the original soil where they had adapted and resided, we constructed a soil transplant incubation experiment in a series of in situ root-ingrowth cores in a subtropical pine-oak forest, to simulate the vegetational pine-oak replacement under environmental succession. The responsive bacterial and fungal community discrepancies were studied to determine whether and how they would be changed. The pine and oak forest stands had greater heterogeneity in fungi composition than bacteria. Original soil and specific tree root status were the main factors that determined microbial community structure. Internal association network characters and intergroup variations of fungi among soil samples were more affected by original soil, while bacteria were more affected by receiving forest. Specifically, dominant tree roots had strong influence in accelerating the fungi community succession to adapt with the surrounding forest. We concluded that soil microbial responses to forest stand alternation differed between microbiome groups, with fungi from their original forest possessing higher resistance to encounter a new vegetation stand, while the bacteria community have faster resilience. The data would advance our insight into local soil microbial community dynamics during ecosystem succession and be helpful to enlighten forest management.

3.
Sci Total Environ ; 912: 168723, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38008322

RESUMEN

2,4-Dichlorophenol, which is largely employed in herbicides and industrial production, is frequently detected in ecosystems and poses risks to human health and environmental safety. Microbial communities are thought to perform better than individual strains in the complete degradation of organic contaminants. However, the synergistic degradation mechanisms of the microbial consortia involved in 2,4-dichlorophenol degradation are still not widely understood. In this study, a bacterial consortium named DCP-2 that is capable of degrading 2,4-dichlorophenol was obtained. Metagenomic analysis, cultivation-dependent functional verification, and co-occurrence network analysis were combined to reveal the primary 2,4-dichlorophenol degraders and the cooperation patterns in the consortium DCP-2. Metagenomic analysis showed that Pseudomonas, Achromobacter, and Pigmentiphaga were the primary degraders for the complete degradation of 2,4-dichlorophenol. Thirty-nine phylogenetically diverse bacterial genera, such as Brucella, Acinetobacter, Aeromonas, Allochromatium and Bosea, were identified as keystone taxa for 2,4-dichlorophenol degradation by keystone taxa analysis of the co-occurrence networks. In addition, a stable synthetic consortium of isolates from DCP-2 was constructed, consisting of Pseudomonas sp. DD-13 and Brucella sp. FZ-1; this synthetic consortium showed superior degradation capability for 2,4-dichlorophenol in both mineral salt medium and wastewater compared with monoculture. The findings provide valuable insights into the practical bioremediation of 2,4-dichlorophenol-contaminated sites.


Asunto(s)
Clorofenoles , Microbiota , Humanos , Bacterias/metabolismo , Clorofenoles/metabolismo , Biodegradación Ambiental , Consorcios Microbianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA