Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(8): 107414, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37554440

RESUMEN

Platelets play an important role in the pathogenesis of sepsis and platelet transfusion is a therapeutic option for sepsis patients, although the exact mechanisms have not been elucidated so far. ITGA2B encodes the αIIb protein in platelets, and its upregulation in sepsis is associated with increased mortality rate. Here, we generated a Itga2b (Q887X) knockin mouse, which significantly reduced ITGA2B expression of platelet and megakaryocyte. The decrease of ITGA2B level aggravated the death of septic mice. We analyzed the transcriptomic profiles of the platelets using RNA sequencing. Our findings suggest that ITGA2B upregulates PTPN6 in megakaryocytes via the transcription factors Nfkb1 and Rel. Furthermore, PTPN6 inhibits platelet apoptosis and necroptosis during sepsis by targeting the Ripk1/Ripk3/Mlkl and caspase-8 pathways. This prevents Kupffer cells from rapidly clearing activated platelets, and eventually maintains vascular integrity during sepsis. Our findings indicate a new function of ITGA2B in the regulation of platelet death during sepsis.

2.
Elife ; 122023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010266

RESUMEN

Myocardial fibrosis is the characteristic pathology of diabetes-induced cardiomyopathy. Therefore, an in-depth study of cardiac heterogeneity and cell-to-cell interactions can help elucidate the pathogenesis of diabetic myocardial fibrosis and identify treatment targets for the treatment of this disease. In this study, we investigated intercellular communication drivers of myocardial fibrosis in mouse heart with high-fat-diet/streptozotocin-induced diabetes at single-cell resolution. Intercellular and protein-protein interaction networks of fibroblasts and macrophages, endothelial cells, as well as fibroblasts and epicardial cells revealed critical changes in ligand-receptor interactions such as Pdgf(s)-Pdgfra and Efemp1-Egfr, which promote the development of a profibrotic microenvironment during the progression of and confirmed that the specific inhibition of the Pdgfra axis could significantly improve diabetic myocardial fibrosis. We also identified phenotypically distinct Hrchi and Postnhi fibroblast subpopulations associated with pathological extracellular matrix remodeling, of which the Hrchi fibroblasts were found to be the most profibrogenic under diabetic conditions. Finally, we validated the role of the Itgb1 hub gene-mediated intercellular communication drivers of diabetic myocardial fibrosis in Hrchi fibroblasts, and confirmed the results through AAV9-mediated Itgb1 knockdown in the heart of diabetic mice. In summary, cardiac cell mapping provides novel insights into intercellular communication drivers involved in pathological extracellular matrix remodeling during diabetic myocardial fibrosis.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ratones , Animales , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Miocardio/patología , Diabetes Mellitus Experimental/complicaciones , Células Endoteliales/patología , Análisis de Expresión Génica de una Sola Célula , Comunicación Celular , Fibrosis , Fibroblastos/patología
3.
Mol Neurobiol ; 59(9): 5734-5749, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35781632

RESUMEN

Ischemic stroke is a clinical syndrome caused by the disruption of blood flow into cerebral tissues and is associated with high disability and mortality rates. Studies have established the pathological role of platelets in cerebral ischemia/reperfusion (I/R) injury, although the underlying mechanism of action remains largely unclear. In this study, we created an I/R mouse model via middle cerebral artery occlusion and reperfusion (MCAO/R) and analyzed the transcriptomic profiles of the ipsilateral and contralateral cortices using RNA-seq. We found that cerebral I/R injury induced platelet invasion and accumulation in the cerebral cortex by stimulating TNF-α secretion from activated astrocytes in the ischemic region, while TNF-α expression enhanced platelet reactivity through the RIP1/RIP3/AKT pathway. Furthermore, the inoculation of TNF-α-stimulated platelets aggravated I/R injury in mice, whereas the administration of anti-TNF-α antibodies at the onset of reperfusion alleviated ischemic damage. The RNA-seq results further showed that AP-1 transcriptionally activated TNF-α in the I/R-injured cortex by directly binding to the promoter region. These findings provide novel insights into the pathological role of platelets activated by reactive astrocyte-derived TNF-α in cerebral I/R injury.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Animales , Astrocitos/metabolismo , Isquemia Encefálica/patología , Proteínas Activadoras de GTPasa , Infarto de la Arteria Cerebral Media/patología , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Daño por Reperfusión/patología , Transducción de Señal , Inhibidores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/farmacología
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(2): 559-564, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35395997

RESUMEN

OBJECTIVE: To construct a mouse model of Glanzmann's thrombasthenia (GT) with ITGA2B c.2659 C>T (p.Q887X) nonsense mutation by CRISPR/Cas9 technology, and then further explore the expression and function of glycoprotein αIIbß3 on the surface of platelet membrane. METHODS: The donor oligonucleotide and gRNA vector were designed and synthesized according to the ITGA2B gene sequence. The gRNA and Cas9 mRNA were injected into fertilized eggs with donor oligonucleotide and then sent back to the oviduct of surrogate mouse. Positive F0 mice were confirmed by PCR genotyping and sequence analysis after birth. The F1 generation of heterozygous GT mice were obtained by PCR and sequencing from F0 bred with WT mice, and then homozygous GT mice and WT mice were obtained by mating with each other. The phenotype of the model was then further verified by detecting tail hemorrhage time, saphenous vein bleeding time, platelet aggregation, expression and function of αIIbß3 on the surface of platelet. RESULTS: The bleeding time of GT mice was significantly longer than that of WT mice (P<0.01). Induced by collagen, thrombin, and adenosine diphosphate (ADP), platelet aggregation in GT mice was significantly inhibited (P<0.01, P<0.01, P<0.05). Flow cytometry analysis showed that the expression of αIIbß3 on the platelet surface of GT mice decreased significantly compared with WT mice (P<0.01), and binding amounts of activated platelets to fibrinogen were significantly reduced after thrombin stimulation (P<0.01). The spreading area of platelet on fibrinogen in GT mice was significantly smaller than that in WT mice (P<0.05). CONCLUSION: A GT mouse model with ITGA2B c.2659 C>T (p.Q887X) nonsense mutation has been established successfully by CRISPR/Cas9 technology. The aggregation function of platelet in this model is defective, which is consistent with GT performance.


Asunto(s)
Codón sin Sentido , Integrina alfa2 , Trombastenia , Animales , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Fibrinógeno/genética , Humanos , Integrina alfa2/genética , Ratones , Oligonucleótidos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , ARN Guía de Kinetoplastida , Trombastenia/diagnóstico , Trombastenia/genética , Trombina/genética
5.
Phytomedicine ; 100: 154089, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35398736

RESUMEN

BACKGROUND: Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) is a perennial herb, and is traditionally used as folk medicine for treating inflammatory diseases and cancer. Gaucocalyxin A (GLA) is an ent­kaurane diterpenoid that is isolated from the aerial parts of R. japonica (Burm. f.) var. glaucocalyx (Maxim.). In a recent study, we found that GLA protects against acute liver dysfunction induced by Escherichia coli, which is likely related to its anti-inflammatory effects. However, the mechanism by which GLA protects liver injury during sepsis is unknown. AIM: To evaluate the anti-inflammatory function of GLA and its regulatory effect on platelet function. METHOD: An in vivo model of sepsis was established by inoculating mice with E. coli. Live function and platelet activation were evaluated through standard assays. The levels of pro-inflammatory factors were measured through ELISA and qRT-PCR. RESULTS: GLA alleviated liver dysfunction in the mouse model of sepsis. GLA-treated mice displayed lower complement activation and liver dysfunction after E. coli infection. GLA alleviated the decrease in peripheral platelet counts by inhibiting their clearance by Kupffer cells in liver. Furthermore, GLA inhibited platelet activation through the RIP1/RIP3/AKT pathway and downregulated C3aR expression on the platelets, thereby inhibiting liver injury and dysfunction due to excessive complement activation. CONCLUSION: GLA can inhibit platelet activation by reducing surface expression of C3aR, which protect the liver from injury induced by excessive complement activation. GLA is a novel therapeutic agent for controlling sepsis-related liver dysfunction.


Asunto(s)
Diterpenos de Tipo Kaurano , Sepsis , Animales , Diterpenos de Tipo Kaurano/farmacología , Escherichia coli , Hígado , Ratones , Activación Plaquetaria , Sepsis/tratamiento farmacológico , Transducción de Señal
6.
Theranostics ; 11(20): 9791-9804, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34815786

RESUMEN

Rationale: Platelets play an essential role in atherosclerosis, but the underlying mechanisms remain to be addressed. This study is to investigate the role of platelets in d-flow induced vascular inflammation and the underlying mechanism. Methods: We established a disturbed blood flow (d-flow) model by partial carotid ligation (PCL) surgery using atherosclerosis-susceptible mice and wild-type mice to observe the d-flow induced platelet accumulation in the subendothelium or in the plaque by immunostaining or transmission electron microscopy. The mechanism of platelet subendothelial accumulation was further explored by specific gene knockout mice. Results: We observed presence of platelets in atherosclerotic plaques either in the atheroprone area of aortic arch or in carotid artery with d-flow using Ldlr-/- or ApoE-/- mice on high fat diet. Immunostaining showed the subendothelial accumulation of circulating platelets by d-flow in vivo. Transmission electron microscopy demonstrated the accumulation of platelets associated with monocytes in the subendothelial spaces. The subendothelial accumulation of platelet-monocyte/macrophage aggregates reached peak values at 2 days after PCL. In examining the molecules that may mediate the platelet entry, we found that deletion of platelet C-type lectin-like receptor 2 (CLEC-2) reduced the subendothelial accumulation of platelets and monocytes/macrophages by d-flow, and ameliorated plaque formation in Ldlr-/- mice on high fat diet. Supportively, CLEC-2 deficient platelets diminished their promoting effect on the migration of mouse monocyte/macrophage cell line RAW264.7. Moreover, monocyte podoplanin (PDPN), the only ligand of CLEC-2, was upregulated by d-flow, and the myeloid-specific PDPN deletion mitigated the subendothelial accumulation of platelets and monocytes/macrophages. Conclusions: Our results reveal a new CLEC-2-dependent platelet subendothelial accumulation in response to d-flow to regulate vascular inflammation.


Asunto(s)
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Animales , Aterosclerosis/etiología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Circulación Sanguínea , Endotelio , Femenino , Lectinas Tipo C/genética , Leucocitos/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Placa Aterosclerótica/metabolismo
7.
Clin Genet ; 100(2): 213-218, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33928629

RESUMEN

Glanzmann's thrombasthenia (GT) is a severe hemorrhagic disease. It is caused by mutations in ITGA2B or ITGB3, which are the respective genes encoding integrin αIIb and ß3. Despite widespread mutational analysis, the mechanisms underlying the extensive variability in bleeding severity observed among affected individuals remains poorly understood. In order to explore the mechanisms conferring for bleeding heterogeneity, three GT patients with ITGA2B c.2671C > T (p.Q891X) who possessed different bleeding scores were studied. Analysis showed that there was significant difference in nonsense-mediated mRNA decay (NMD) efficiency among the three patients. These differences positively correlated with their bleeding score. Next, a knock-in mouse model (KI mice) with the ITGA2B c.2659C > T (p.Q887X) was generated using CRISPR/Cas9. Importantly, this mutation is homologous to ITGA2B c.2671C > T (p.Q891X) in humans. The bleeding time of KI mice was significantly in comparison to the wide-type mice. Interestingly, bleeding was stopped after treatment with caffeine, which is a known NMD inhibitor. This suggests that NMD efficiency potentially influences bleeding severity in ITGA2B c.2659C > T (p.Q887X) KI mice.


Asunto(s)
Integrina alfa2/genética , Mutación , Degradación de ARNm Mediada por Codón sin Sentido , Trombastenia/genética , Animales , Tiempo de Sangría , Sistemas CRISPR-Cas , Cafeína , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones Mutantes , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos
8.
JCI Insight ; 5(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32641582

RESUMEN

Multiple organ failure in sepsis is a progressive failure of several interdependent organ systems. Liver dysfunction occurs early during sepsis and is directly associated with patient death; however, the underlying mechanism of liver dysfunction is unclear. Platelet transfusion benefits patients with sepsis, and inhibition of complement activation protects liver function in septic animals. Herein, we explored the potential link between platelets, complement activation, and liver dysfunction in sepsis. We found that deletion of platelet C-type lectin-like receptor 2 (CLEC-2) exacerbated liver dysfunction in early sepsis. Platelet CLEC-2-deficient mice exhibited higher complement activation, more severe complement attack in the liver, and lower plasma levels of complement inhibitors at early time points after E. coli infection. Circulating monocytes expressed the CLEC-2 ligand podoplanin in early sepsis, and podoplanin binding induced release of complement inhibitors from platelets. Injection of complement inhibitors released from platelets reduced complement attack and attenuated liver dysfunction in septic mice. These findings indicate a new function of platelets in the regulation of complement activation during sepsis.


Asunto(s)
Inactivadores del Complemento/farmacología , Hígado/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Monocitos/metabolismo , Sepsis/complicaciones , Animales , Plaquetas/metabolismo , Inactivadores del Complemento/metabolismo , Hígado/metabolismo , Glicoproteínas de Membrana/efectos de los fármacos , Glicoproteínas de Membrana/genética , Ratones , Monocitos/efectos de los fármacos , Activación Plaquetaria/efectos de los fármacos , Activación Plaquetaria/fisiología , Sepsis/inducido químicamente , Regulación hacia Arriba
10.
J Exp Med ; 214(9): 2649-2670, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28794132

RESUMEN

In this study, we show that mice lacking high-molecular-weight kininogen (HK) were resistant to lipopolysaccharide (LPS)-induced mortality and had significantly reduced circulating LPS levels. Replenishment of HK-deficient mice with human HK recovered the LPS levels and rendered the mice susceptible to LPS-induced mortality. Binding of HK to LPS occurred through the O-polysaccharide/core oligosaccharide, consistent with the ability to bind LPS from K. pneumoniae, P. aeruginosa, S. minnesota, and different E. coli strains. Binding of LPS induced plasma HK cleavage to the two-chain form (HKa, containing a heavy chain [HC] and a light chain [LC]) and bradykinin. Both HKa and the LC, but not the HC, could disaggregate LPS. The light chain bound LPS with high affinity (K d = 1.52 × 10-9 M) through a binding site in domain 5 (DHG15). A monoclonal antibody against D5 significantly reduced LPS-induced mortality and circulating LPS levels in wild-type mice. Thus, HK, as a major LPS carrier in circulation, plays an essential role in endotoxemia.

11.
Zhonghua Yi Xue Za Zhi ; 94(33): 2613-7, 2014 Sep 09.
Artículo en Chino | MEDLINE | ID: mdl-25511496

RESUMEN

OBJECTIVE: To explore the antagonistic effect of estrogen on iron-induced bone resorption and the role of oxidative stress. METHODS: In vivo, 8-week-old female imprinting control region mice were randomly divided into 3 groups of ferritin (F), ovariectomy (OVX) and F+OVX. Intervention was made by ferric ammonium citrate (FAC) and OVX. Serum levels of ferritin, malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. The expression changes of TRAP, CTR, matrix metallopeptidase 9 (MMP9) and CTK derived from murine bilateral tibia were detected by reverse transcription-polymerase chain reaction (RT-PCR). A high-resolution micro-computed tomography was utilized for scanning distal femur. In vitro, RAW264.7 cells were used and intervened by FAC and estradiol. Tartrate resistant acid phosphatase (TRAP) staining was performed and wine-red TRAP positive cells were counted. ROS level was detected by 2', 7'-dichloro-dihydrofluorescein diacetate (DCFH-DA) with a multi-detection reader. RESULTS: The serum ferritin were heightened in F and F+OVX groups [(335.30 ± 44.10) vs (41.38 ± 5.56) µg/L, (324.80 ± 38.60) vs (41.38 ± 5.56) µg/L respectively, P < 0.01]. The trend of MDA level was F+OVX>OVX>F while SOD level was quite opposite. Body mass density of F+OVX group was lower than that of OVX group (0.114 ± 0.013 vs 0.187 ± 0.029 mg/mm³, P < 0.05) or F group (0.114 ± 0.013 vs 0.902 ± 0.064 mg/mm³, P < 0.05). RT-PCR: TRAP and CTK gene expression of OVX group was lower than that of F+OVX group. However, TRAP, CTR and CTK gene expression of F+OVX group was higher than that of F group. TRAP staining: FAC increased the number of TRAP positive cells (41.7 ± 5.5 vs 20.0 ± 4.0, P < 0.05) while estradiol decreased it (14.8 ± 5.1 vs 41.7 ± 5.5, P < 0.05). DCFH-DA test show that reactive oxygen species was elevated by FAC (160% ± 8% vs 100% ± 9%, P < 0.05) and reduced by estradiol (53% ± 13% vs 160% ± 8%, P < 0.05). CONCLUSION: The antagonistic effect of estrogen on iron-induced bone resorption is probably regulated by oxidative stress.


Asunto(s)
Resorción Ósea , Animales , Estradiol , Antagonistas de Estrógenos , Estrógenos , Femenino , Fémur , Compuestos Férricos , Ferritinas , Fluoresceínas , Hierro , Ratones , Ovariectomía , Compuestos de Amonio Cuaternario , Microtomografía por Rayos X
12.
J Immunol ; 192(9): 4398-408, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24688027

RESUMEN

Phagocytosis of apoptotic cells (efferocytosis) is essential for regulation of immune responses and tissue homeostasis and is mediated by phagocytic receptors. In this study, we found that urokinase plasminogen activator receptor (uPAR) plays an important role in internalization of apoptotic cells and also characterized the underlying mechanisms. In a flow cytometry-based phagocytic assay, uPAR-deficient macrophages displayed significant defect in internalization but not tethering of apoptotic cells. When uPAR-deficient mice were challenged with apoptotic cells, they exhibited pronounced splenomegaly resulting from accumulation of abundant apoptotic cells in spleen. Overexpression of uPAR in HEK-293 cells enhanced efferocytosis, which was inhibited by Annexin V and phosphatidylserine (PS) liposome, suggesting that uPAR-mediated efferocytosis is dependent on PS. In serum lacking high m.w. kininogen (HK), a uPAR ligand, uPAR-mediated efferocytosis was significantly attenuated, which was rescued by replenishment of HK. As detected by flow cytometry, HK selectively bound to apoptotic cells, but not viable cells. In purified systems, HK was specifically associated with PS liposome. HK binding to apoptotic cells induced its rapid cleavage to the two-chain form of HK (HKa) and bradykinin. Both the H chain and L chain of HKa were associated with PS liposome and apoptotic cells. HKa has higher binding affinity than HK to uPAR. Overexpression of Rac1/N17 cDNA inhibited uPAR-mediated efferocytosis. HK plus PS liposome stimulated a complex formation of CrkII with p130Cas and Dock-180 and Rac1 activation in uPAR-293 cells, but not in control HEK-293 cells. Thus, uPAR mediates efferocytosis through HK interaction with PS on apoptotic cells and activation of the Rac1 pathway.


Asunto(s)
Macrófagos/inmunología , Fagocitosis/fisiología , Fosfatidilserinas/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Animales , Apoptosis/inmunología , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Quininógeno de Alto Peso Molecular/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/fisiología , Resonancia por Plasmón de Superficie , Transfección , Proteína de Unión al GTP rac1/metabolismo
13.
Rheumatology (Oxford) ; 53(7): 1301-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24599920

RESUMEN

OBJECTIVES: Clinical and experimental observations have suggested that bradykinin, a major activation product of the plasma kallikrein-kinin system, is involved in the pathogenesis of arthritis, but the pathogenic role of bradykinin receptors remains inconclusive. In this study we examined whether bradykinin receptors are important in the pathogenesis of anti-collagen antibody-induced arthritis (CAIA) using double receptor-deficient (B1RB2R(-/-)) mice. METHODS: CAIA was induced in B1RB2R(+/+) and B1RB2R(-/-) mice by injection of an anti-collagen antibody cocktail on day 0 and lipopolysaccharide on day 3. Severity of disease was evaluated by measurement of joint diameter and histological analysis. The expression of proinflammatory cytokines in joint tissue and peripheral mononuclear cells was determined by ELISA and real-time RT-PCR. RESULTS: The absent expression of B1R and B2R mRNA in B1RB2R(-/-) mice was confirmed by RT-PCR. Although B1RB2R(+/+) mice developed severe CAIA, the severity of the disease was significantly attenuated in B1RB2R(-/-) mice. In B1RB2R(+/+) mice bearing CAIA, both B1R and B2R mRNA levels were increased in joint tissue and peripheral mononuclear cells. Compared with B1RB2R(+/+) mice, the production of IL-1ß and IL-6 in joint tissue and their mRNA expression in peripheral mononuclear cells were remarkably reduced in B1RB2R(-/-) mice. CONCLUSION: These observations provide genetic evidence that bradykinin plays an important role in the pathogenesis of CAIA. B1R, whose expression is induced in inflamed joint tissue and peripheral inflammatory cells, is important in the development of CAIA.


Asunto(s)
Artritis Experimental/inmunología , Artritis Experimental/fisiopatología , Bradiquinina/fisiología , Receptores de Bradiquinina/fisiología , Animales , Anticuerpos Antiidiotipos/efectos adversos , Artritis Experimental/metabolismo , Colágeno/efectos adversos , Colágeno/inmunología , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Articulaciones/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Bradiquinina/deficiencia , Receptores de Bradiquinina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...