Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37687001

RESUMEN

Formaldehyde, as a harmful gas produced by materials used for decorative purposes, has a serious impact on human health, and is also the focus and difficulty of indoor environmental polution prevention; hence, designing and developing gas sensors for the selective measurement of formaldehyde at room temperature is an urgent task. Herein, a series of SnS2/SnO2 composites with hollow spherical structures were prepared by a facile hydrothermal approach for the purpose of formaldehyde sensing at room temperature. These novel hierarchical structured SnS2/SnO2 composites-based gas sensors demonstrate remarkable selectivity towards formaldehyde within the concentration range of sub-ppm (0.1 ppm) to ppm (10 ppm) at room temperature. Notably, the SnS2/SnO2-2 sensor exhibits an exceptional formaldehyde-sensing performance, featuring an ultra-high response (1.93, 0.1 ppm and 17.51, 10 ppm), as well as good repeatability, long-term stability, and an outstanding theoretical detection limit. The superior sensing capabilities of the SnS2/SnO2 composites can be attributed to multiple factors, including enhanced formaldehyde adsorption, larger specific surface area and porosity of the hollow structure, as well as the synergistic interfacial incorporation of the SnS2/SnO2 heterojunction. Overall, the excellent gas sensing performance of SnS2/SnO2 hollow spheres has opened up a new way for their detection of trace formaldehyde at room temperature.

2.
Microorganisms ; 11(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37110425

RESUMEN

Chlorella vulgaris is one of the most commonly used microalgae in aquaculture feeds. It contains high concentrations of various kinds of nutritional elements that are involved in the physiological regulation of aquaculture animals. However, few studies have been conducted to illustrate their influence on the gut microbiota in fish. In this work, the gut microbiota of Nile tilapia (Oreochromis niloticus) (average weight is 6.64 g) was analyzed by high-throughput sequencing of the 16S rRNA gene after feeding with 0.5% and 2% C. vulgaris additives in diets for 15 and 30 days (average water temperature was 26 °C). We found that the impact of C. vulgaris on the gut microbiota of Nile tilapia was feeding-time dependent. Only by feeding for 30 days (not 15 days) did the addition of 2% C. vulgaris to diets significantly elevate the alpha diversity (Chao1, Faith pd, Shannon, Simpson, and the number of observed species) of the gut microbiota. Similarly, C. vulgaris exerted a significant effect on the beta diversity (Bray-Curtis similarity) of the gut microbiota after feeding for 30 days (not 15 days). During the 15-day feeding trial, LEfSe analysis showed that Paracoccus, Thiobacillus, Dechloromonas, and Desulfococcus were enriched under 2% C. vulgaris treatment. During the 30-day feeding trial, Afipia, Ochrobactrum, Polymorphum, Albidovulum, Pseudacidovorax, and Thiolamprovum were more abundant in 2% C. vulgaris-treated fish. C. vulgaris promoted the interaction of gut microbiota in juvenile Nile tilapia by increasing the abundance of Reyranella. Moreover, during the feeding time of 15 days, the gut microbes interacted more closely than those during the feeding time of 30 days. This work will be valuable for understanding how C. vulgaris in diets impacts the gut microbiota in fish.

3.
Front Cell Infect Microbiol ; 13: 1094050, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998635

RESUMEN

Introduction: The bacterium Elizabethkingia miricola is a multispecies pathogen associated with meningitis-like disease that has been isolated from several amphibian species, including the bullfrog, but this is the first isolation in Guangxi. In the present study, the dominant bacteria were isolated from the brains of five bullfrogs with meningitis-like disease on a South China farm in Guangxi. Methods: The NFEM01 isolate was identified by Gram staining; morphological observations; 16S rRNA, rpoB, and mutT-based phylogenetic tree analysis; and physiochemical characterization and was subjected to drug sensitivity and artificial infection testing. Results and discussion: As a result of identification, the NFEM01 strain was found to be E. miricola. An artificial infection experiment revealed that NFEM01 infected bullfrogs and could cause symptoms of typical meningitis-like disease. As a result of the bacterial drug sensitivity test, NFEM01 is highly sensitive to mequindox, rifampicin, enrofloxacin, nitrofural, and oxytetracycline and there was strong resistance to gentamicin, florfenicol, neomycin, penicillin, amoxicillin, doxycycline, and sulfamonomethoxine. This study provides a reference to further study the pathogenesis mechanism of E. miricola-induced bullfrog meningitislike disease and its prevention and treatment.


Asunto(s)
Meningitis , Animales , Rana catesbeiana/genética , Rana catesbeiana/microbiología , ARN Ribosómico 16S/genética , Filogenia , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...